Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning (2003) (Operations Research/Computer Science Interfaces Series #25)
By:
Sign Up Now!
Already a Member? Log In
You must be logged into UK education collection to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to convergence analysis of some of the methods enumerated above. *Computer programs for many algorithms of simulation-based optimization.
- Copyright:
- 2003
Book Details
- Book Quality:
- Publisher Quality
- ISBN-13:
- 9781475737660
- Related ISBNs:
- 9781402074547
- Publisher:
- Springer US
- Date of Addition:
- 01/25/21
- Copyrighted By:
- N/A
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Science, Business and Finance, Mathematics and Statistics
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.