Représentations de Weil et GL2 - Algèbres de division et GLn: Vers les corps de classes galoisiens I, II (1987) (Lecture Notes in Mathematics #1252)
By:
Sign Up Now!
Already a Member? Log In
You must be logged into UK education collection to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- This monograph represents the first two parts of the author's research on the generalization of class field theory for the noncommutative case. Part I concentrates on the construction of all the irreducible representations of a multiplicative group B* of a quaternion algebra B over a local field k with residue field of characteristic 2. These results are of considerable significance in the light of the connections found by Jacquet-Langlands between representations of GL2 (k) and B* and although they concern GL2 they also provide a model for GLn. Part II deals with n 2 unifying results previously obtained by Weil, Jacquet-Langlands, Bernstein-Zelevinskii, Deligne-Kazdan and others. More than a mere comparison of these results, it reveals an intrinsic correspondence found with the aid of the base restriction process of algebraic groups and the substitution of division of algebras for Cartan subalgebras. The approach is purely local and therefore may be applied also to other types of reductive groups, in particular Sp2l as well as to archimedean cases. This book will be of great interest to researchers and graduate students working in algebraic number theory and automorphic forms.
- Copyright:
- 1987
Book Details
- Book Quality:
- Publisher Quality
- ISBN-13:
- 9783540478713
- Related ISBNs:
- 9783540178279
- Publisher:
- Springer Berlin Heidelberg
- Date of Addition:
- 07/13/22
- Copyrighted By:
- N/A
- Adult content:
- No
- Language:
- French
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Mathematics and Statistics
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.