Global Bifurcation of Periodic Solutions with Symmetry (1988) (Lecture Notes in Mathematics #1309)
By:
Sign Up Now!
Already a Member? Log In
You must be logged into UK education collection to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- This largely self-contained research monograph addresses the following type of questions. Suppose one encounters a continuous time dynamical system with some built-in symmetry. Should one expect periodic motions which somehow reflect this symmetry? And how would periodicity harmonize with symmetry? Probing into these questions leads from dynamics to topology, algebra, singularity theory, and to many applications. Within a global approach, the emphasis is on periodic motions far from equilibrium. Mathematical methods include bifurcation theory, transversality theory, and generic approximations. A new homotopy invariant is designed to study the global interdependence of symmetric periodic motions. Besides mathematical techniques, the book contains 5 largely nontechnical chapters. The first three outline the main questions, results and methods. A detailed discussion pursues theoretical consequences and open problems. Results are illustrated by a variety of applications including coupled oscillators and rotating waves: these links to such disciplines as theoretical biology, chemistry, fluid dynamics, physics and their engineering counterparts make the book directly accessible to a wider audience.
- Copyright:
- 1988
Book Details
- Book Quality:
- Publisher Quality
- ISBN-13:
- 9783540391500
- Related ISBNs:
- 9783540192343
- Publisher:
- Springer Berlin Heidelberg
- Date of Addition:
- 07/16/22
- Copyrighted By:
- N/A
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Earth Sciences, Mathematics and Statistics
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.