Continuous Martingales and Brownian Motion (1991) (Grundlehren der mathematischen Wissenschaften #293)
By: and
Sign Up Now!
Already a Member? Log In
You must be logged into UK education collection to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- This book focuses on the probabilistic theory ofBrownian motion. This is a good topic to center a discussion around because Brownian motion is in the intersec tioll of many fundamental classes of processes. It is a continuous martingale, a Gaussian process, a Markov process or more specifically a process with in dependent increments; it can actually be defined, up to simple transformations, as the real-valued, centered process with independent increments and continuous paths. It is therefore no surprise that a vast array of techniques may be success fully applied to its study and we, consequently, chose to organize the book in the following way. After a first chapter where Brownian motion is introduced, each of the following ones is devoted to a new technique or notion and to some of its applications to Brownian motion. Among these techniques, two are of para mount importance: stochastic calculus, the use ofwhich pervades the whole book and the powerful excursion theory, both of which are introduced in a self contained fashion and with a minimum of apparatus. They have made much easier the proofs of many results found in the epoch-making book of Itö and McKean: Diffusion Processes and their Sampie Paths, Springer (1965).
- Copyright:
- 1991
Book Details
- Book Quality:
- Publisher Quality
- ISBN-13:
- 9783662217269
- Related ISBNs:
- 9783540521679
- Publisher:
- Springer Berlin Heidelberg
- Date of Addition:
- 08/28/22
- Copyrighted By:
- N/A
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Earth Sciences, Mathematics and Statistics
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.
Reviews
Other Books
- by Daniel Revuz
- by Marc Yor
- in Nonfiction
- in Earth Sciences
- in Mathematics and Statistics