Browse Results

Showing 7,576 through 7,600 of 55,511 results

Characterisation of Turbulent Duct Flows: Experiments and Direct Numerical Simulations (Springer Theses)

by Bayode Owolabi

This book presents several new findings in the field of turbulent duct flows, which are important for a range of industrial applications. It presents both high-quality experiments and cutting-edge numerical simulations, providing a level of insight and rigour rarely found in PhD theses. The scientific advancements concern the effect of the Earth’s rotation on large duct flows, the experimental confirmation of marginal turbulence in a pressure-driven square duct flow (previously only predicted in simulations), the identification of similar marginal turbulence in wall-driven flows using simulations (for the first time by any means) and, on a separate but related topic, a comprehensive experimental study on the phenomenon of drag reduction via polymer additives in turbulent duct flows. In turn, the work on drag reduction resulted in a correlation that provides a quantitative prediction of drag reduction based on a single, measurable material property of the polymer solution, regardless of the flow geometry or concentration. The first correlation of its kind, it represents an important advancement from both a scientific and practical perspective.

Characteristic Classes. (AM-76), Volume 76 (PDF)

by John Milnor James D. Stasheff

The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Characteristics of Distributed-Parameter Systems: Handbook of Equations of Mathematical Physics and Distributed-Parameter Systems (Mathematics and Its Applications #266)

by A.G. Butkovskiy L.M. Pustyl'nikov

This book is a continuation of the book Green's Functions and Transfer Functions [35] written some ten years ago. However, there is no overlap whatsoever in the contents of the two books, and this book can be used quite independently of the previous one. This series of books represents a new kind of handbook, in which are collected data on the characteristics of systems with distributed and lumped parameters. The present volume covers some two hundred problems. Essentially, this book should be considered as a desktop handbook, intended, like [35], to give rapid "on-line" access to relevant data about problems. For each problem, the book lists all the main characteristics of the solution: standardising functions, Green's functions, transfer functions or matrices, eigenfunctions and eigenvalues with their asymptotics, roots of characteristic equations, and other data. In addition to systems described by a single differential equation, this volume also includes degenerate multiconnected systems, systems for which no Green's function or matrix exists, and other special cases which are important for applications.

Characterization of C(x) among its Subalgebras

by R. B. Burckel

This book presents a detailed account of some results about subalgebras of C(X), which carry a Banach algebra norm. It is intended for students who have had a standard graduate real-variable course and be acquainted with a few odds and ends of functional analysis and complex-variables.

Characterization of C(x) among its Subalgebras

by R. B. Burckel

This book presents a detailed account of some results about subalgebras of C(X), which carry a Banach algebra norm. It is intended for students who have had a standard graduate real-variable course and be acquainted with a few odds and ends of functional analysis and complex-variables.

The Characterization of Finite Elasticities: Factorization Theory in Krull Monoids via Convex Geometry (Lecture Notes in Mathematics #2316)

by David J. Grynkiewicz

This book develops a new theory in convex geometry, generalizing positive bases and related to Carathéordory’s Theorem by combining convex geometry, the combinatorics of infinite subsets of lattice points, and the arithmetic of transfer Krull monoids (the latter broadly generalizing the ubiquitous class of Krull domains in commutative algebra)This new theory is developed in a self-contained way with the main motivation of its later applications regarding factorization. While factorization into irreducibles, called atoms, generally fails to be unique, there are various measures of how badly this can fail. Among the most important is the elasticity, which measures the ratio between the maximum and minimum number of atoms in any factorization. Having finite elasticity is a key indicator that factorization, while not unique, is not completely wild. Via the developed material in convex geometry, we characterize when finite elasticity holds for any Krull domain with finitely generated class group $G$, with the results extending more generally to transfer Krull monoids. This book is aimed at researchers in the field but is written to also be accessible for graduate students and general mathematicians.

Characterization of Neural Activity Using Complex Network Theory: An Application to the Study of Schizophrenia (Springer Theses)

by Javier Gomez-Pilar

This book reports on the development and assessment of a novel framework for studying neural interactions (the connectome) and their dynamics (the chronnectome). Using EEG recordings taken during an auditory oddball task performed by 48 patients with schizophrenia and 87 healthy controls, and applying local and network measures, changes in brain activation from pre-stimulus to cognitive response were assessed, and significant differences were observed between the patients and controls. This book investigates the source of the network abnormalities and presents new evidence for the disconnection hypothesis and the aberrant salience hypothesis with regard to schizophrenia. Moreover, it puts forward a novel approach to combining local regularity measures and graph measures in order to characterize schizophrenia brain dynamics, and presents interesting findings on the regularity of brain patterns in healthy control subjects versus patients with schizophrenia. Besides providing new evidence for the disconnection hypothesis, it offers a source of inspiration for future research directions in the field.

Characterization of SAR Clutter and Its Applications to Land and Ocean Observations

by Gui Gao

This book discusses statistical modeling of single- and multi-channel synthetic aperture radar (SAR) images and the applications of these newly developed models in land and ocean monitoring, such as target detection and terrain classification. It is a valuable reference for researchers and engineers interested in information processing of remote sensing, radar signal processing, and image interpretation.

Characterizations of C* Algebras: the Gelfand Naimark Theorems

by Robert Doran

The first unified, in-depth discussion of the now classical Gelfand-Naimark theorems, thiscomprehensive text assesses the current status of modern analysis regarding both Banachand C*-algebras.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems focuses on general theoryand basic properties in accordance with readers' needs ... provides complete proofs of theGelfand-Naimark theorems as well as refinements and extensions of the original axioms. . . gives applications of the theorems to topology, harmonic analysis. operator theory.group representations, and other topics ... treats Hermitian and symmetric *-algebras.algebras with and without identity, and algebras with arbitrary (possibly discontinuous)involutions . . . includes some 300 end-of-chapter exercises . . . offers appendices on functionalanalysis and Banach algebras ... and contains numerous examples and over 400 referencesthat illustrate important concepts and encourage further research.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems is an ideal text for graduatestudents taking such courses as The Theory of Banach Algebras and C*-Algebras: inaddition , it makes an outstanding reference for physicists, research mathematicians in analysis,and applied scientists using C*-algebras in such areas as statistical mechanics, quantumtheory. and physical chemistry.

Characterizations of C* Algebras: the Gelfand Naimark Theorems

by Robert Doran

The first unified, in-depth discussion of the now classical Gelfand-Naimark theorems, thiscomprehensive text assesses the current status of modern analysis regarding both Banachand C*-algebras.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems focuses on general theoryand basic properties in accordance with readers' needs ... provides complete proofs of theGelfand-Naimark theorems as well as refinements and extensions of the original axioms. . . gives applications of the theorems to topology, harmonic analysis. operator theory.group representations, and other topics ... treats Hermitian and symmetric *-algebras.algebras with and without identity, and algebras with arbitrary (possibly discontinuous)involutions . . . includes some 300 end-of-chapter exercises . . . offers appendices on functionalanalysis and Banach algebras ... and contains numerous examples and over 400 referencesthat illustrate important concepts and encourage further research.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems is an ideal text for graduatestudents taking such courses as The Theory of Banach Algebras and C*-Algebras: inaddition , it makes an outstanding reference for physicists, research mathematicians in analysis,and applied scientists using C*-algebras in such areas as statistical mechanics, quantumtheory. and physical chemistry.

Characterizations of Univariate Continuous Distributions (Atlantis Studies in Probability and Statistics #7)

by Mohammad Ahsanullah

Provides in an organized manner characterizations of univariate probability distributions with many new results published in this area since the 1978 work of Golambos & Kotz "Characterizations of Probability Distributions" (Springer), together with applications of the theory in model fitting and predictions.

Characterizing Entanglement and Quantum Correlations Constrained by Symmetry (Springer Theses)

by Jordi Tura i Brugués

This thesis focuses on the study and characterization of entanglement and nonlocal correlations constrained under symmetries. It includes original results as well as detailed methods and explanations for a number of different threads of research: positive partial transpose (PPT) entanglement in the symmetric states; a novel, experimentally friendly method to detect nonlocal correlations in many-body systems; the non-equivalence between entanglement and nonlocality; and elemental monogamies of correlations. Entanglement and nonlocal correlations constitute two fundamental resources for quantum information processing, as they allow novel tasks that are otherwise impossible in a classical scenario. However, their elusive characterization is still a central problem in quantum information theory. The main reason why such a fundamental issue remains a formidable challenge lies in the exponential growth in complexity of the Hilbert space as well as the space of multipartite correlations. Physical systems of interest, on the other hand, display symmetries that can be exploited to reduce this complexity, opening the possibility that some of these questions become tractable for such systems.

Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids (Lecture Notes in Mathematics #2306)

by Ruy Exel David R. Pitts

This book develops tools to handle C*-algebras arising as completions of convolution algebras of sections of line bundles over possibly non-Hausdorff groupoids. A fundamental result of Gelfand describes commutative C*-algebras as continuous functions on locally compact Hausdorff spaces. Kumjian, and later Renault, showed that Gelfand's result can be extended to include non-commutative C*-algebras containing a commutative C*-algebra. In their setting, the C*-algebras in question may be described as the completion of convolution algebras of functions on twisted Hausdorff groupoids with respect to a certain norm. However, there are many natural settings in which the Kumjian–Renault theory does not apply, in part because the groupoids which arise are not Hausdorff. In fact, non-Hausdorff groupoids have been a source of surprising counterexamples and technical difficulties for decades. Including numerous illustrative examples, this book extends the Kumjian–Renault theory to a much broader class of C*-algebras. This work will be of interest to researchers and graduate students in the area of groupoid C*-algebras, the interface between dynamical systems and C*-algebras, and related fields.

Characterizing Interdependencies of Multiple Time Series: Theory and Applications (SpringerBriefs in Statistics)

by Yuzo Hosoya Kosuke Oya Taro Takimoto Ryo Kinoshita

This book introduces academic researchers and professionals to the basic concepts and methods for characterizing interdependencies of multiple time series in the frequency domain. Detecting causal directions between a pair of time series and the extent of their effects, as well as testing the non existence of a feedback relation between them, have constituted major focal points in multiple time series analysis since Granger introduced the celebrated definition of causality in view of prediction improvement.Causality analysis has since been widely applied in many disciplines. Although most analyses are conducted from the perspective of the time domain, a frequency domain method introduced in this book sheds new light on another aspect that disentangles the interdependencies between multiple time series in terms of long-term or short-term effects, quantitatively characterizing them. The frequency domain method includes the Granger noncausality test as a special case.Chapters 2 and 3 of the book introduce an improved version of the basic concepts for measuring the one-way effect, reciprocity, and association of multiple time series, which were originally proposed by Hosoya. Then the statistical inferences of these measures are presented, with a focus on the stationary multivariate autoregressive moving-average processes, which include the estimation and test of causality change. Empirical analyses are provided to illustrate what alternative aspects are detected and how the methods introduced here can be conveniently applied. Most of the materials in Chapters 4 and 5 are based on the authors' latest research work. Subsidiary items are collected in the Appendix.

Characterizing Pedagogical Flow: An Investigation of Mathematics and Science Teaching in Six Countries

by W. H. Schmidt

Characterizing Pedagogical Flow presents conclusions from a multi-disciplinary, multi-national research project blending quantitative and qualitative approaches through a discourse methodology. The work produced portraits of mathematics and science education that were dramatically different for each of the countries involved: France, Japan, Norway, Spain, Switzerland, and the United States. To explain these differences, it is proposed that the interaction of curriculum and pedagogy is culturally unique and yields classroom learning experiences that are qualitatively different from country to country. This idea has profound implications for how international education research is interpreted.

Characters and Blocks of Solvable Groups: A User’s Guide to Large Orbit Theorems (Synthesis Lectures on Mathematics & Statistics)

by James Cossey Yong Yang

This book highlights recent developments in the representation theory of finite solvable groups, which seeks to connect group theory to linear algebra in ways that allow for better study of the groups in question. Over the last several decades, a number of results in the representations of solvable groups have been proven using so-called “large orbit” theorems. This book provides an extensive survey of the current state of the large-orbit theorems. The authors outline the proofs of the large orbit theorems to provide an overview of the topic, then demonstrate how these theorems can be used to prove new results about solvable groups.

Characters and Cyclotomic Fields in Finite Geometry (Lecture Notes in Mathematics #1797)

by Bernhard Schmidt

This monograph contributes to the existence theory of difference sets, cyclic irreducible codes and similar objects. The new method of field descent for cyclotomic integers of presribed absolute value is developed. Applications include the first substantial progress towards the Circulant Hadamard Matrix Conjecture and Ryser`s conjecture since decades. It is shown that there is no Barker sequence of length l with 13<1<4x10^(12). Finally, a conjecturally complete classification of all irreducible cyclic two-weight codes is obtained.

Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107 (PDF)

by George Lusztig

This book presents a classification of all (complex) irreducible representations of a reductive group with connected centre, over a finite field. To achieve this, the author uses etale intersection cohomology, and detailed information on representations of Weyl groups.

Charge Transport in Low Dimensional Semiconductor Structures: The Maximum Entropy Approach (Mathematics in Industry #31)

by Vito Dario Camiola Giovanni Mascali Vittorio Romano

This book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schrödinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drift-diffusion models are also obtained by using suitable scaling procedures. An entire chapter in the book is dedicated to a promising new material like graphene. The models appear to be sound and sufficiently accurate for systematic use in computer-aided design simulators for complex electron devices. The book is addressed to applied mathematicians, physicists, and electronic engineers. It is written for graduate or PhD readers but the opening chapter contains a modicum of semiconductor physics, making it self-consistent and useful also for undergraduate students.

Charm Production in Deep Inelastic Scattering: Mellin Moments of Heavy Flavor Contributions to F2(x,Q^2) at NNLO (Springer Theses)

by Sebastian Klein

The production of heavy quarks in high-energy experiments offers a rich field to study, both experimentally and theoretically. Due to the additional quark mass, the description of these processes in the framework of perturbative QCD is much more demanding than it is for those involving only massless partons. In the last two decades, a large amount of precision data has been collected by the deep inelastic HERA experiment. In order to make full use of these data, a more precise theoretical description of charm quark production in deep inelastic scattering is needed. This work deals with the first calculation of fixed moments of the NNLO heavy flavor corrections to the proton structure function F2 in the limit of a small charm-quark mass. The correct treatment of these terms will allow not only a more precise analysis of the HERA data, but starting from there also a more precise determination of the parton distribution functions and the strong coupling constant, which is an essential input for LHC physics. The complexity of this calculation requires the application and development of technical and mathematical methods, which are also explained here in detail.

Charming New Physics in Beautiful Processes? (Springer Theses)

by Matthew John Kirk

This PhD thesis is dedicated to a subfield of elementary particle physics called “Flavour Physics”. The Standard Model of Particle Physics (SM) has been confirmed by thousands of experimental measurements with a high precision. But the SM leaves important questions open, like what is the nature of dark matter or what is the origin of the matter-antimatter asymmetry in the Universe. By comparing high precision Standard Model calculations with extremely precise measurements, one can find the first glimpses of the physics beyond the SM – currently we see the first hints of a potential breakdown of the SM in flavour observables. This can then be compared with purely theoretical considerations about new physics models, known as model building. Both precision calculations and model building are extremely specialised fields and this outstanding thesis contributes significantly to both topics within the field of Flavour Physics and sheds new light on the observed anomalies.

Chartered Institute of Building Handbook and Members List 1996

by NA NA

The official Handbook from the Chartered Institute of Building, this work provides detailed information on the work of the Institute, up-to-date editorial articles from specialists in the Building sector, key personnel within the Institute, a complete listing of all CIOB members (33000) including their communication details and a list of Construction Consultants listing their specialities.

Refine Search

Showing 7,576 through 7,600 of 55,511 results