Browse Results

Showing 3,901 through 3,925 of 42,932 results

Thermo-Hydromechanical and Chemical Coupling in Geomaterials and Applications: Proceedings of the 3rd International Symposium GeoProc'2008

by Jian-Fu Shao Nicolas Burlion

GeoProc2008 collects the proceedings of the International Conference on Coupled T-H-M-C (thermal, hydraulic, mechanical, chemical) Processes in Geosystems.

Thermo-Hydro-Mechanical Coupling in Fractured Rock (Pageoph Topical Volumes)

by Hans-Joachim Kümpel

(4). The next three papers extend these views by taking a closer look on parameters that govern hydraulic diffusivity in sandstones and other types of rocks. Specific targets addressed are the influence of differential stress on permeability (5), imaging of the fracture geometry (6), and pressure induced variations in the pore geometry (7). Contributions no. 8 to 10 cover investigations of permeability-porosity relationships during rock evolution (8), of the formation, propagation, and roughness of fractures in a plexi-glass block (9), and pressure oscillation effects of two-phase flow under controlled conditions (10). The subsequent four articles focus on diverse modeling approaches. Issues considered are how the geometry and the mechanical behavior of fractures can be characterized by mathematical expressions (11), how the evolution of permeability in a microcracking rock can be expressed by an analytical model (12), deviations from the cubic law for a fracture of varying aperture (13), and the numerical simulation of scale effects in flow through fractures (14). Three further papers refer to in situ observations, being related to topics as the assessment of in situ permeability from the spatio­ temporal distribution of an aftershock sequence (15), to the scale dependence of hydraulic pathways in crystalline rock (16), and to the significance of pore pressure - stress coupling in deep tunnels and galleries (17).

Thermo-Hydro-Mechanical-Chemical Processes in Porous Media: Benchmarks and Examples (Lecture Notes in Computational Science and Engineering #86)

by Olaf Kolditz Uwe-Jens Görke Hua Shao Wenqing Wang

The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate chance. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.

Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Benchmarking Initiatives (Terrestrial Environmental Sciences)

by Olaf Kolditz Uwe-Jens Görke Hua Shao Wenqing Wang Sebastian Bauer

This book presents a new suite of benchmarks for and examples of porous media mechanics collected over the last two years. It continues the assembly of benchmarks and examples for porous media mechanics published in 2014. The book covers various applications in the geosciences, geotechnics, geothermal energy, and geological waste deposition. The analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, and even climate change. In order to assess the feasibility and safety of geotechnical applications, process-based modelling is the only tool that can effectively quantify future scenarios, a fact which also creates a huge burden of responsibility concerning the reliability of computational tools. The book shows that benchmarking offers a suitable methodology for verifying the quality of modelling tools based on best practices, and together with code comparison fosters community efforts. It also provides a brief introduction to the DECOVALEX, SeSBench and MOMAS initiatives. This benchmark book is part of the OpenGeoSys initiative – an open source project designed to share knowledge and experience in environmental analysis and scientific computation.

Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: From Benchmarking to Tutoring (Terrestrial Environmental Sciences)

by Olaf Kolditz Thomas Nagel Hua Shao Wenqing Wang Sebastian Bauer

The book comprises the 3rd collection of benchmarks and examples for porous and fractured media mechanics. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to a wide area of applications in environmental engineering, such as geological waste deposition, geothermal energy utilization (shallow and deep systems), carbon capture and storage (CCS) as well as water resources management and hydrology. In order to assess the feasibility, safety as well as sustainability of geoenvironmental applications, model-based simulation is the only way to quantify future scenarios. This charges a huge responsibility concerning the reliability of conceptual models and computational tools. Benchmarking is an appropriate methodology to verify the quality and validate the concept of models based on best practices. Moreover, benchmarking and code comparison are building strong community links. The 3rd THMC benchmark book also introduces benchmark-based tutorials, therefore the subtitle is selected as “From Benchmarking to Tutoring”. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation. The new version of OGS-6 is introduced and first benchmarks are presented therein (see appendices).

Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Closed-Form Solutions (Terrestrial Environmental Sciences)

by Olaf Kolditz Hua Shao Wenqing Wang Sebastian Bauer

The present book provides guidance to understanding complicated coupled processes based on the experimental data available and implementation of developed algorithms in numerical codes. Results of selected test cases in the fields of closed-form solutions (e.g., deformation processes), single processes (such as groundwater flow) as well as coupled processes are presented.It is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation with the community.

Thermo-Dynamics of Plates and Shells (Foundations of Engineering Mechanics)

by Jan Awrejcewicz Vadim Anatolevich Krys'ko Anton V. Krys'ko

This monograph is devoted to nonlinear dynamics of thin plates and shells with thermosensitive excitation. Because of the variety of sizes and types of mathematical models in current use, there is no prospect of solving them analytically. However, the book emphasizes a rigorous mathematical treatment of the obtained differential equations, since it helps efficiently in further developing of various suitable numerical algorithms to solve the stated problems.

Thermally-driven Mesoscale Flows and their Interaction with Atmospheric Boundary Layer Turbulence (Springer Theses)

by Jon Ander Arrillaga Mitxelena

This book presents developments of novel techniques and applies them in order to understand the interactions between thermally driven mesoscale flows (sea and mountain breezes) and the turbulent exchange within the atmospheric boundary layer. These interactions are not accurately reproduced in the meteorological models currently employed for weather forecasting. Consequently, important variables such as air temperature and wind speed are misrepresented. Also, the concentrations of relevant greenhouse gases such as CO2 are considerably affected by these interactions.By applying a systematic algorithm based on objective criteria (presented here), the thesis explores complete observational databases spanning up to 10 years. Further, it presents statistically significant and robust results on the topic, which has only been studied in a handful of cases in the extant literature. Lastly, by applying the algorithm directly to the outputs of the meteorological model, the thesis helps readers understand the processes discussed and reveals the biases in such models.

Thermal Transport in Semiconductors: First Principles and Phonon Hydrodynamics (Springer Theses)

by Pol Torres Alvarez

Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier’s law including a hydrodynamic term based on collective behavior in the phonon ensemble. This approach makes it possible to describe in a unifying way recent experiments that had to resort to unphysical assumptions in order to uphold the validity of Fourier’s law, demonstrating that hydrodynamic heat transport is a pervasive type of behavior in semiconductors at reduced scales.

Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer (Lecture Notes in Physics #921)

by Stefano Lepri

Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources.The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models.The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.

The Thermal Theory of Cyclones: A History of Meteorological Thought in the Nineteenth Century (Meteorological Monographs)

by Gisela Kutzbach

Gisela Kutzbach has provided an unparalleled account of the mainstream of meteorological thought during the nineteenth and early twentieth centuries. This book takes us from the era of attempts to describe disturbances as mechanistic interactions of air currents, through Espy's introduction in the 1830's of the proposition that cyclones are convective systems driven by heat of condensation in central rainy areas, up to the distinctively different polar front theory of 1920, often considered as the birth of modern meteorology. Follies and controversies as well as successes are recounted, and in the tale the cast of characters, many of them acute observers or experimenters as well as theoreticians, and some crusty and dogmatic, are brought to life. The period was one in which basic concepts of thermodynamics, hydrodynamics, and energy conversions emerged with parallel accommodations to the special needs of meteorology. Influences of the development of synoptic meteorology and early aerology are thoroughly treated, essential mathematical expositions are presented in their original forms with explications, and theories and analyses are illuminated by numerous well-chosen figures and quotations. Concise but complete, and written in a style easy to comprehend, the treatise is a lively account of a lively time in the development of science. Kutzbach has succeeded well in her objectives, to provide "an insight in the particular problems and methods of problem solving in nineteenth century meteorology" and to illustrate "that science is a human activity and that its development is an open-ended process involving the constant testing of hypotheses."

Thermal Springs and Geothermal Energy in the Qinghai-Tibetan Plateau and the Surroundings (Springer Hydrogeology)

by Zhijie Liao

This book introduces readers to the rich and varied thermal springs of the Tibetan Plateau, which is steadily rising due to the collision of two continental plates. Readers will discover a wealth of information on boiling springs and hot springs, including their location and elevation, temperature, geological characteristics, and water chemical data, as well as tables on warm and tepid springs. Shedding new light on this vital supplement to hydroelectric resources in remote southwest China, the book will appeal to a broad relationship, from experts researching the Tibetan Plateau to companies specializing in geothermal exploration.

Thermal Safety Margins in Nuclear Reactors

by Henryk Anglart

This book presents an overview of state-of-the art approaches to determine thermal safety margins in nuclear reactors. It presents both the deterministic and probabilistic aspects of thermal safety margins of nuclear reactors to facilitate the understanding of these two difficult topics at various academic levels, from undergraduates to researchers in nuclear engineering.It first sets out the theoretical background before exploring how to determine thermal safety margins in nuclear reactors, through examples, problems and advanced state-of-the-art approaches. This will help undergraduate students better understand the most fundamental aspects of nuclear reactor safety. For researchers and practitioners, this book provides a comprehensive overview of most recent achievements in the field, offering an excellent starting point to develop new methods for the assessment of the thermal safety margins.This book is written to bridge the gap between deterministic and appropriate treatment of uncertainties to assess safety margins in nuclear reactors, presenting these approaches as complementary to each other. Even though these two approaches are frequently used in parallel in real-world applications, there has been a lack of a consistent teaching approach in this area.This book is suitable for readers with a background in calculus, thermodynamics, fluid mechanics, and heat transfer. It is assumed that readers have previous exposure to such concepts as laws of thermodynamics, enthalpy, entropy, and conservation equations used in fluid mechanics and heat transfer.Key Features:• Covers the theory, principles, and assessment methods of thermal safety margins in nuclear reactors whilst presenting the state-of-the-art technology in the field• Combines the deterministic thermal safety considerations with a comprehensive treatment of uncertainties, offering a framework that is applicable to all current and future commercial nuclear reactor types• Provides numerous examples and problems to be solvedHenryk Anglart is Professor Emeritus of Nuclear Engineering at the KTH Royal Institute of Technology, Stockholm, Sweden, and at the Warsaw University of Technology (WUT), Warsaw, Poland. He received his MSc from WUT and his PhD from the Rensselaer Polytechnic Institute, Troy, NY. After his eighteen year career as a research and development engineer at Westinghouse in Sweden, he accepted a tenure position at KTH, where he has supervised many PhD students and post-doctoral fellows, and has taught several courses in nuclear engineering. In addition to research and teaching, Prof. Henryk Anglart was serving for a long time as head of Reactor Technology Division, Deputy Director of the Physics Department, and Director of Nuclear Technology Center at KTH. Prof. Henryk Anglart authored and coauthored over 200 journals, conference and other scientific publications. He is also an author of three textbooks used in teaching of nuclear engineering courses at WUT and KTH, and two CRC Press books: Multilingual Dictionary of Nuclear Reactor Physics and Engineering, and Introduction to Sustainable Energy Transformation.

Thermal Safety Margins in Nuclear Reactors

by Henryk Anglart

This book presents an overview of state-of-the art approaches to determine thermal safety margins in nuclear reactors. It presents both the deterministic and probabilistic aspects of thermal safety margins of nuclear reactors to facilitate the understanding of these two difficult topics at various academic levels, from undergraduates to researchers in nuclear engineering.It first sets out the theoretical background before exploring how to determine thermal safety margins in nuclear reactors, through examples, problems and advanced state-of-the-art approaches. This will help undergraduate students better understand the most fundamental aspects of nuclear reactor safety. For researchers and practitioners, this book provides a comprehensive overview of most recent achievements in the field, offering an excellent starting point to develop new methods for the assessment of the thermal safety margins.This book is written to bridge the gap between deterministic and appropriate treatment of uncertainties to assess safety margins in nuclear reactors, presenting these approaches as complementary to each other. Even though these two approaches are frequently used in parallel in real-world applications, there has been a lack of a consistent teaching approach in this area.This book is suitable for readers with a background in calculus, thermodynamics, fluid mechanics, and heat transfer. It is assumed that readers have previous exposure to such concepts as laws of thermodynamics, enthalpy, entropy, and conservation equations used in fluid mechanics and heat transfer.Key Features:• Covers the theory, principles, and assessment methods of thermal safety margins in nuclear reactors whilst presenting the state-of-the-art technology in the field• Combines the deterministic thermal safety considerations with a comprehensive treatment of uncertainties, offering a framework that is applicable to all current and future commercial nuclear reactor types• Provides numerous examples and problems to be solvedHenryk Anglart is Professor Emeritus of Nuclear Engineering at the KTH Royal Institute of Technology, Stockholm, Sweden, and at the Warsaw University of Technology (WUT), Warsaw, Poland. He received his MSc from WUT and his PhD from the Rensselaer Polytechnic Institute, Troy, NY. After his eighteen year career as a research and development engineer at Westinghouse in Sweden, he accepted a tenure position at KTH, where he has supervised many PhD students and post-doctoral fellows, and has taught several courses in nuclear engineering. In addition to research and teaching, Prof. Henryk Anglart was serving for a long time as head of Reactor Technology Division, Deputy Director of the Physics Department, and Director of Nuclear Technology Center at KTH. Prof. Henryk Anglart authored and coauthored over 200 journals, conference and other scientific publications. He is also an author of three textbooks used in teaching of nuclear engineering courses at WUT and KTH, and two CRC Press books: Multilingual Dictionary of Nuclear Reactor Physics and Engineering, and Introduction to Sustainable Energy Transformation.

Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics (Springer Theses)

by Peter Millington

The author develops a new perturbative formalism of non-equilibrium thermal quantum field theory for non-homogeneous backgrounds. As a result of this formulation, the author is able to show how so-called pinch singularities can be removed, without resorting to ad hoc prescriptions, or effective resummations of absorptive effects. Thus, the author arrives at a diagrammatic approach to non-equilibrium field theory, built from modified Feynman rules that are manifestly time-dependent from tree level. This new formulation provides an alternative framework in which to derive master time evolution equations for physically meaningful particle number densities, which are valid to all orders in perturbation theory and to all orders in gradient expansion. Once truncated in a loop-wise sense, these evolution equations capture non-equilibrium dynamics on all time-scales, systematically describing energy-violating processes and the non-Markovian evolution of memory effects

Thermal Physics of the Atmosphere (Advancing Weather and Climate Science #1)

by Maarten H. Ambaum

Thermal Physics of the Atmosphere offers a concise and thorough introduction on how basic thermodynamics naturally leads on to advanced topics in atmospheric physics. The book starts by covering the basics of thermodynamics and its applications in atmospheric science. The later chapters describe major applications, specific to more specialized areas of atmospheric physics, including vertical structure and stability, cloud formation, and radiative processes. The book concludes with a discussion of non-equilibrium thermodynamics as applied to the atmosphere. This book provides a thorough introduction and invaluable grounding for specialised literature on the subject. Introduces a wide range of areas associated with atmospheric physics Starts from basic level thermal physics Ideally suited for readers with a general physics background Self-assessment questions included for each chapter Supplementary website to accompany the book

Thermal Insulation and Radiation Control Technologies for Buildings (Green Energy and Technology)

by Jan Kośny David W. Yarbrough

This book offers a unique treatment of building insulating products and the integration of these products with building components. This book was written for all those involved in building design, specification, construction, and commissioning, providing them with an understanding of and appreciation for the wide variety of thermal insulation products and technologies available for use in all types of buildings. The book proceeds from basic definitions and discussion of heat-transfer topics and thermal insulation concepts, to the design and use of these products. The impact of thermal insulation on dynamic building performance, including factors other than heating and cooling, is also discussed.The book does not require an advanced mathematical background. The authors provide sufficient information to provide a qualitative understanding, with more mathematical sections included for those interested in modeling and analysis. The basic physics associated with heat transfer in buildings are presented, along with the steady-state and transient analysis techniques needed for the effective implementation of thermal insulation and assemblies.Modern building design involves the integration of comfort, safety, economics, durability and cost considerations, all of which impact the selection and use of thermal insulation materials in buildings. In addition to theoretical explanations of the underlying science, the book details the properties and application of new thermal insulation materials, including vacuum panels, gas-filled panels, aerogels, phase-change materials, and radiation control technologies.Given its scope, the book will be of interest to researchers and building engineers wishing to understand the latest technologies and materials available, so as to achieve reduced energy consumption in commercial and residential buildings.

Thermal Infrared Remote Sensing: Sensors, Methods, Applications (Remote Sensing and Digital Image Processing #17)

by Claudia Kuenzer and Stefan Dech

This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techniques for analyzing thermal data. Ground-breaking chapters on applications present a wide variety of case studies leading to a deepened understanding of land and sea surface temperature dynamics, urban heat island effects, forest fires, volcanic eruption precursors, underground coal fires, geothermal systems, soil moisture variability, and temperature-based mineral discrimination. ‘Thermal Infrared Remote Sensing: Sensors, Methods, Applications’ is unique because of the large field it spans, the potentials it reveals, and the detail it provides. This book is an indispensable volume for scientists, lecturers, and decision makers interested in thermal infrared technology, methods, and applications.

Thermal Ice Drilling Technology (Springer Geophysics)

by Pavel G. Talalay

This book provides a review of thermal ice drilling technologies, including the design, parameters, and performance of various tools and drills for making holes in ice sheets, ice caps, mountain glaciers, ice shelves, and sea ice. In recent years, interest in thermal drilling technology has increased as a result of subglacial lake explorations and extraterrestrial investigations. The book focuses on the latest ice drilling technologies, but also discusses the historical development of ice drilling tools and devices over the last 100 years to offer valuable insights into what is possible and what not to do in the future. Featuring numerous figures and pictures, many of them published for the first time, it is intended for specialists working in ice-core sciences, polar oceanography, drilling engineers and glaciologists, and is also a useful reference for researchers and graduate students working in engineering and cold-regions technology.

Thermal History of Sedimentary Basins: Methods and Case Histories

by Nancy D. Naeser and Thane H. McCulloh

The collection of papers in this volume is a direct result of the Society of Economic Paleontologists and Mineralogists Research Symposium on "Thermal History of Sedimentary Basins: Methods and Case Histories" held as part of the American Association of Petroleum Geologists Annual Convention in New Orleans in March 1985. The original goal of the sym­ posium was to provide a forum where specialists from a variety of dis­ ciplines could present their views of methods that can be used to study the thermal history of a sedimentary basin or an important portion of a basin. An explicit part of that goal was to illustrate each method by presentation of a case history application. The original goal is addressed by the chapters in this volume, each of which emphasizes a somewhat different approach and gives field data in one way or another to illustrate the practical useful­ ness ofthe method. The significance of our relative ignorance of the thermal conductivities of sedimentary rocks, especially shales, in efforts to understand or model sedimentary basin thermal histories and maturation levels is a major thrust of the chapter by Blackwell and Steele. Creaney focuses on variations in kerogen composition in source rocks of different depositional environments and the degree to which these chem- . ically distinct kerogens respond differently to progressive burial heating.

Thermal Flows in Porous Media (Theory and Applications of Transport in Porous Media #1)

by H.I. Ene Dan Polisevski

The transport of heat through a porous medium in the presence of exterior forces, generally produced by the Earth's gravitational field and/or a pressure gradient, is called conduction when the Darcean fluid is static (motionless), and convection when the Darcean fluid is in motion. It is customary to use the term convection also to describe the motion which arises from the density differences due to temperature gradients within the Darcean fluid. We think that because this last phenomenon is more general it should be given a specific name; here we call it thermal flow. In the sense of the above definitions, convection and thermal flow are two distinct phenomena (they occur together, in underground combustion for instance), and the convective motion which arises when a Darcean l'luid is in contact with a source of heat is a particular case of thermal flow. Thermal flow occurs naturally and is important in many geophysical and industrial problems, particularly in oil exploration, and in the petroleum, chemical and nuclear industries (for instance, in the evaluation of capability of heat-removal from a hypothetical accident in a nuclear reactor). It can play a part in the transfer of heat from the deep interior of the Earth to a shallow depth in the geothermal regions. However, in the field of energy conversion little attention has yet been paid to the insulating characteristics of the saturated porous materials introduced in some enclosures (storage tanks) to decrease the convective and radiative transfer of heat.

Thermal Energy Storage with Phase Change Materials: A Literature Review of Applications for Buildings Materials (SpringerBriefs in Applied Sciences and Technology)

by João M.P.Q. Delgado Joana C. Martinho Ana Vaz Sá Ana S. Guimarães Vitor Abrantes

This short book provides an update on various methods for incorporating phase changing materials (PCMs) into building structures. It discusses previous research into optimizing the integration of PCMs into surrounding walls (gypsum board and interior plaster products), trombe walls, ceramic floor tiles, concrete elements (walls and pavements), windows, concrete and brick masonry, underfloor heating, ceilings, thermal insulation and furniture an indoor appliances.Based on the phase change state, PCMs fall into three groups: solid–solid PCMs, solid–liquid PCMs and liquid–gas PCMs. Of these the solid–liquid PCMs, which include organic PCMs, inorganic PCMs and eutectics, are suitable for thermal energy storage. The process of selecting an appropriate PCM is extremely complex, but crucial for thermal energy storage. The potential PCM should have a suitable melting temperature, and the desirable heat of fusion and thermal conductivity specified by the practical application. Thus, the methods of measuring the thermal properties of PCMs are key.With suitable PCMs and the correct incorporation method, latent heat thermal energy storage (LHTES) can be economically efficient for heating and cooling buildings. However, several problems need to be tackled before LHTES can reliably and practically be applied.

Thermal Effects in Fracture of Multiphase Materials: Proceedings of the Euromech Colloquium 255 October 31–November 2, 1989, Paderborn, FRG (Lecture Notes in Engineering #59)

by Klaus P. Herrmann Zbigniew S. Olesiak

This book contains a selection of the lectures presented at the Euromech Colloquium 255, held at the Liborianum, Paderborn, from 31 October to 2 November 1989. The subject of the Colloquium "Thermal Effects in Fracture of Multiphase Materials" attracted about 50 scientists from 13 coun­ tries. Several well known scientists who are active in research on thermal effects in fracture proces­ ses were present at the Colloquium as lecturers (29 lectures were delivered) as well as valuable participants of the intensive discussions which took part during the sessions, coffe breaks and lunch times. The closing session of the Colloquium was devoted to a general discussion on the trends in the development of the research in the field, the prospects of the theoretical research, new materials (composites, ceramics etc. ), and the trends in technological applications. Over twenty comments and remarks have been made during this final general discussion, showing the interest of the audi­ torium in such an exchange of viewpoints. However, this discussion is not reflected in this volume. The Colloquium has been subdivided into six sessions: I "Thermodynamics of Fracture Processes" II . "Fracture of Nonhomogeneous Solids" III "Thermal Cracking of Heterogeneous Materials" IV-VI "Fracture Phenomena in Composite Systems I-III" One of the main topics in session I consisted in the description of the influence of thermal effects on shear band localization failure. Thereby shear bands nucleate due.

Thermal Desorption (Innovative Site Remediation Technology #6)

by William C. Anderson P.E., DEE

This book is part of a series of eight providing profession-wide, consensus-based assessment of innovative site remediation and hazardous waste treatment technologies.

Thermal Convection, Magnetic Field, and Differential Rotation in Solar-type Stars (Springer Theses)

by Hideyuki Hotta

This thesis describes the studies on the solar interior where turbulent thermal convection plays an important role. The author solved, for the first time, one of the long-standing issues in solar physics, i.e., the maintenance mechanism of the solar differential rotation in the near-surface shear layer. The author attacked this problem with a newly developed approach, the reduced speed of sound technique, which enabled him to investigate the surface and deep solar layers in a self-consistent manner. This technique also made it possible to achieve an unprecedented performance in the solar convection simulations for the usage of the massively parallel supercomputers such as the RIKEN K system. It was found that the turbulence and the mean flows such as the differential rotation and the meridional circulation mutually interact with each other to maintain the flow structures in the Sun. Recent observations by helioseismology support the author's proposed theoretical mechanism. The book also addresses the generation of the magnetic field in such turbulent convective motions, which is an important step forward for solar cyclic dynamo research.

Refine Search

Showing 3,901 through 3,925 of 42,932 results