Browse Results

Showing 65,901 through 65,925 of 100,000 results

High Power Laser Propulsion (Springer Series on Atomic, Optical, and Plasma Physics #116)

by Yuri A. Rezunkov

This book gives an in-depth analysis of the physical phenomena of thrust production by laser radiation, as well as laser propulsion engines, and laser-propelled vehicles. It brings together into a unified context accumulated up-to-date information on laser propulsion research, considering propulsion phenomena, laser propulsion techniques, design of vehicles with laser propulsion engines, and high-power laser systems to provide movement for space vehicles. In particular, the reader will find detailed coverage of: designs of laser propulsion engines, operating as both air-breathing and ramjet engines to launch vehicles into LEOs; Assembly of vehicles whereby laser power from a remote laser is collected and directed into a propulsion engine; and, the laser-adaptive systems that control a laser beam to propel vehicles into orbits by delivering laser power through the Earth's atmosphere. This book is essential reading for researchers and professionals involved in laser propulsion.

High Power Laser-Matter Interaction (Springer Tracts in Modern Physics #238)

by Peter Mulser Dieter Bauer

Introduction and handbook to high-power laser-matter interaction, laser generated plasma, nonlinear waves, particle acceleration, nonlinear optics, nonlinear dynamics, radiation transport, it provides a systematic review of the major results and developments of the past 25 years.

The High-Power Iodine Laser (Springer Series in Optical Sciences #34)

by G. Brederlow E. Fill K. J. Witte

High-Power Dye Lasers (Springer Series in Optical Sciences #65)

by Francisco J. Duarte

High-power dye lasers provide a versatile tool in many scientific, industrial and medical applications. This book offers an up-to-date and practical guide to the physics and technology of these lasers for all those designing, building and using such systems. Individual topics include dispersive resonators, signal amplification, and dye laser pumping by excimer lasers, copper-vapor lasers and flashlamps.

High Power Diode Lasers: Technology and Applications (Springer Series in Optical Sciences #128)

by Reinhart Poprawe Peter Loosen Friedrich Bachmann

This book summarizes a five year research project, as well as subsequent results regarding high power diode laser systems and their application in materials processing. The text explores the entire chain of technology, from the semiconductor technology, through cooling mounting and assembly, beam shaping and system technology, to applications in the processing of such materials as metals and polymers. Includes theoretical models, a range of important parameters and practical tips.

High Permittivity Gate Dielectric Materials (Springer Series in Advanced Microelectronics #43)

by Samares Kar

"The book comprehensively covers all the current and the emerging areas of the physics and the technology of high permittivity gate dielectric materials, including, topics such as MOSFET basics and characteristics, hafnium-based gate dielectric materials, Hf-based gate dielectric processing, metal gate electrodes, flat-band and threshold voltage tuning, channel mobility, high-k gate stack degradation and reliability, lanthanide-based high-k gate stack materials, ternary hafnia and lanthania based high-k gate stack films, crystalline high-k oxides, high mobility substrates, and parameter extraction. Each chapter begins with the basics necessary for understanding the topic, followed by a comprehensive review of the literature, and ultimately graduating to the current status of the technology and our scientific understanding and the future prospects.".

High Performance Vision Intelligence: Recent Advances (Studies in Computational Intelligence #913)

by Aparajita Nanda Nisha Chaurasia

This book focuses on the challenges and the recent findings in vision intelligence incorporating high performance computing applications. The contents provide in-depth discussions on a range of emerging multidisciplinary topics like computer vision, image processing, artificial intelligence, machine learning, cloud computing, IoT, and big data. The book also includes illustrations of algorithms, architecture, applications, software systems, and data analytics within the scope of the discussed topics. This book will help students, researchers, and technology professionals discover latest trends in the fields of computer vision and artificial intelligence.

High-Performance Thin-Layer Chromatography (HPTLC)

by ManMohan Srivastava

The present edited book is the presentation of 18 in-depth national and international contributions from eminent professors, scientists and instrumental chemists from educational institutes, research organizations and industries providing their views on their experience, handling, observation and research outputs on HPTLC, a multi-dimensional instrumentation. The book describes the recent advancements made on TLC which have revolutionized and transformed it into a modern instrumental technique HPTLC. The book addresses different chapters on HPTLC fundamentals: principle, theory, understanding; instrumentation: implementation, optimization, validation, automation and qualitative and quantitative analysis; applications: phytochemical analysis, biomedical analysis, herbal drug quantification, analytical analysis, finger print analysis and potential for hyphenation: HPTLC future to combinatorial approach, HPTLC-MS, HPTLC-FTIR and HPTLC-Scanning Diode Laser. The chapters in the book have been designed in such away that the reader follows each step of the HPTLC in logical order.

High Performance Tensegrity-Inspired Metamaterials and Structures

by Anna Al Sabouni-Zawadzka

Following current trends toward development of novel materials and structures, this volume explores the concept of high-performance metamaterials and metastructures with extremal mechanical properties, inspired by tensegrity systems. The idea of extremal materials is applied here to cellular tensegrity lattices of various scales. Tensegrity systems have numerous advantages: they are lightweight, have a high stiffness-to-mass ratio, are prone to structural control, can be applied in smart and adaptive systems, and exhibit unusual mechanical properties. This study is focused on tensegrity lattices, whose inner architecture resembles that of cellular metamaterials, but which are aimed at civil engineering applications in non-material scales. It proposes a methodology for investigation of extremal mechanical properties of such systems, based on discrete and continuum approaches, including the discussion on scale effects. It proves that, similarly to tensegrity-based metamaterials, tensegrity metastructures are able to exhibit extremal mechanical behaviour. This book is directed to researchers and scientists working on metamaterials and tensegrity systems, developing energy-absorption solutions for building and transport industry. The findings described in this monograph can also be useful in other fields of applied sciences, such as civil engineering, robotics and material science.

High Performance Tensegrity-Inspired Metamaterials and Structures

by Anna Al Sabouni-Zawadzka

Following current trends toward development of novel materials and structures, this volume explores the concept of high-performance metamaterials and metastructures with extremal mechanical properties, inspired by tensegrity systems. The idea of extremal materials is applied here to cellular tensegrity lattices of various scales. Tensegrity systems have numerous advantages: they are lightweight, have a high stiffness-to-mass ratio, are prone to structural control, can be applied in smart and adaptive systems, and exhibit unusual mechanical properties. This study is focused on tensegrity lattices, whose inner architecture resembles that of cellular metamaterials, but which are aimed at civil engineering applications in non-material scales. It proposes a methodology for investigation of extremal mechanical properties of such systems, based on discrete and continuum approaches, including the discussion on scale effects. It proves that, similarly to tensegrity-based metamaterials, tensegrity metastructures are able to exhibit extremal mechanical behaviour. This book is directed to researchers and scientists working on metamaterials and tensegrity systems, developing energy-absorption solutions for building and transport industry. The findings described in this monograph can also be useful in other fields of applied sciences, such as civil engineering, robotics and material science.

High Performance Technical Textiles

by Roshan Paul

An authentic resource for the fundamentals, applied techniques, applications and recent advancements of all the main areas of technical textiles Created to be a comprehensive reference, High Performance Technical Textiles includes the review of a wide range of technical textiles from household to space textiles. The contributors—noted experts in the field from all the continents—offer in-depth coverage on the fibre materials, manufacturing processes and techniques, applications, current developments, sustainability and future trends. The contributors include discussions on synthetic versus natural fibres, various textile manufacturing techniques, textile composites and finishing approaches that are involved in the manufacturing of textiles for a specific high performance application. Whilst the book provides the basic knowledge required for an understanding of technical textiles, it can serve as a springboard for inspiring new inventions in hi-tech fibres and textiles. This important book: Contains a unique approach that offers a comprehensive understanding of the manufacturing and applications of technical textiles Includes a general overview to the fundamentals, current techniques, end use applications as well as the most recent advancements Explores the current standards in the industry and the ongoing research in the field Offers a comprehensive and single source reference on the topic Written for academics, researchers and professionals working in textile and related industries, High Performance Technical Textiles offers a systematic, structured, logical and updated source of information for understanding technical textiles.

High Performance Technical Textiles

by Roshan Paul

An authentic resource for the fundamentals, applied techniques, applications and recent advancements of all the main areas of technical textiles Created to be a comprehensive reference, High Performance Technical Textiles includes the review of a wide range of technical textiles from household to space textiles. The contributors—noted experts in the field from all the continents—offer in-depth coverage on the fibre materials, manufacturing processes and techniques, applications, current developments, sustainability and future trends. The contributors include discussions on synthetic versus natural fibres, various textile manufacturing techniques, textile composites and finishing approaches that are involved in the manufacturing of textiles for a specific high performance application. Whilst the book provides the basic knowledge required for an understanding of technical textiles, it can serve as a springboard for inspiring new inventions in hi-tech fibres and textiles. This important book: Contains a unique approach that offers a comprehensive understanding of the manufacturing and applications of technical textiles Includes a general overview to the fundamentals, current techniques, end use applications as well as the most recent advancements Explores the current standards in the industry and the ongoing research in the field Offers a comprehensive and single source reference on the topic Written for academics, researchers and professionals working in textile and related industries, High Performance Technical Textiles offers a systematic, structured, logical and updated source of information for understanding technical textiles.

High Performance Structural Materials: Proceedings of Chinese Materials Conference 2017 (Materials Science Forum Vol. 816 Ser.)

by Yafang Han

This proceedings volume gathers selected papers presented at the Chinese Materials Conference 2017 (CMC2017), held in Yinchuan City, Ningxia, China, on July 06-12, 2017.This book covers a wide range of powder metallurgy, high performance aluminum alloys, high performance titanium & titanium alloys, superalloys, metal matrix composite, space materials science and technology, rare metals, refractory metals and their applications, advanced ceramics materials, nanostructured metals and alloys. The Chinese Materials Conference (CMC) is the most important serial conference of the Chinese Materials Research Society (C-MRS) and has been held each year since the early 1990s. The 2017 installment included 37 Symposia covering four fields: Advances in energy and environmental materials; High performance structural materials; Fundamental research on materials; and Advanced functional materials. More than 5500 participants attended the congress, and the organizers received more than 700 technical papers. Based on the recommendations of symposium organizers and after peer reviewing, 490 papers have been included in the present proceedings, which showcase the latest original research results in the field of materials, achieved by more than 300 research groups at various universities and research institutes.

High Performance Soft Magnetic Materials (Springer Series in Materials Science #252)

by Arcady Zhukov

This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets.

High Performance Simulation for Industrial Paint Shop Applications

by Kevin Verma Robert Wille

This book describes the current state of the art for simulating paint shop applications, their advantages and limitations, as well as corresponding high-performance computing (HPC) methods utilized in this domain. The authors provide a comprehensive introduction to fluid simulations, corresponding optimization methods from the HPC domain, as well as industrial paint shop applications. They showcase how the complexity of these applications bring corresponding fluid simulation methods to their limits and how these shortcomings can be overcome by employing HPC methods. To that end, this book covers various optimization techniques for three individual fluid simulation techniques, namely grid-based methods, volumetric decomposition methods, and particle-based methods.

High-Performance Simulation-Based Optimization (Studies in Computational Intelligence #833)

by El-Ghazali Talbi Peter Korošec Thomas Bartz-Beielstein Bogdan Filipič

This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That’s where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.

High Performance Self-Consolidating Cementitious Composites

by Ganesh Babu Kodeboyina

This book attempts to bring together some of the basic intricacies in the production of the complete range of self-consolidating cementitious composites, with a proper understanding of the contributions of different materials and their combinations, including performance and limitations. Presents a comprehensive perspective of the state of the art in self-compacting concretes while explaining the basic background and principles, includes possible alternatives of making SCC with different powder extenders and pozzolanic materials Explores concepts through theoretical and graphical representations

High Performance Self-Consolidating Cementitious Composites

by Ganesh Babu Kodeboyina

This book attempts to bring together some of the basic intricacies in the production of the complete range of self-consolidating cementitious composites, with a proper understanding of the contributions of different materials and their combinations, including performance and limitations. Presents a comprehensive perspective of the state of the art in self-compacting concretes while explaining the basic background and principles, includes possible alternatives of making SCC with different powder extenders and pozzolanic materials Explores concepts through theoretical and graphical representations

High Performance Scientific And Engineering Computing: Proceedings of the 3rd International FORTWIHR Conference on HPSEC, Erlangen, March 12–14, 2001 (Lecture Notes in Computational Science and Engineering #21)

by Michael Breuer Franz Durst Christoph Zenger

In Douglas Adams' book 'Hitchhiker's Guide to the Galaxy', hyper-intelligent beings reached a point in their existence where they wanted to understand the purpose of their own existence and the universe. They built a supercomputer, called Deep Thought, and upon completion, they asked it for the answer to the ultimate question of life, the universe and everything else. The computer worked for several millennia on the answers to all these questions. When the day arrived for hyper-intelligent beings the to receive the answer, they were stunned, shocked and disappointed to hear that the answer was simply 42. The still open questions to scientists and engineers are typically much sim­ pler and consequently the answers are more reasonable. Furthermore, because human beings are too impatient and not ready to wait for such a long pe­ riod, high-performance computing techniques have been developed, leading to much faster answers. Based on these developments in the last two decades, scientific and engineering computing has evolved to a key technology which plays an important role in determining, or at least shaping, future research and development activities in many branches of industry. Development work has been going on all over the world resulting in numerical methods that are now available for simulations that were not foreseeable some years ago. However, these days the availability of supercomputers with Teraflop perfor­ mance supports extensive computations with technical relevance. A new age of engineering has started.

High Performance Scientific and Engineering Computing: Proceedings of the International FORTWIHR Conference on HPSEC, Munich, March 16–18, 1998 (Lecture Notes in Computational Science and Engineering #8)

by Hans-Joachim Bungartz Franz Durst Christoph Zenger

Since the creation of the term "Scientific Computing" and of its German counterpart "Wissenschaftliches Rechnen" (whoever has to be blamed for that), scientists from outside the field have been confused about the some­ what strange distinction between scientific and non-scientific computations. And the insiders, i. e. those who are, at least, convinced of always comput­ ing in a very scientific way, are far from being happy with this summary of their daily work, even if further characterizations like "High Performance" or "Engineering" try to make things clearer - usually with very modest suc­ cess, however. Moreover, to increase the unfortunate confusion of terms, who knows the differences between "Computational Science and Engineering" , as indicated in the title of the series these proceedings were given the honour to be published in, and "Scientific and Engineering Computing", as chosen for the title of our book? Actually, though the protagonists of scientific com­ puting persist in its independence as a scientific discipline (and rightly so, of course), the ideas behind the term diverge wildly. Consequently, the variety of answers one can get to the question "What is scientific computing?" is really impressive and ranges from the (serious) "nothing else but numerical analysis" up to the more mocking "consuming as much CPU-time as possible on the most powerful number crunchers accessible" .

High-Performance Polymers for Engineering-Based Composites

by Omari V. Mukbaniani Marc J. M. Abadie Tamara Tatrishvili

High-Performance Polymers for Engineering-Based Composites presents a selection of investigations and innovative research in polymer chemistry and advanced materials. The book includes case studies in the field of nanocomposites. The volume provides coverage of new research in polymer science and engineering with applications in chemical engineerin

High Performance Polymers and Their Nanocomposites

by Visakh P. M. Semkin A. O.

High Performance Polymers and Their Nanocomposites summarizes many of the recent research accomplishments in the area of high performance polymers, such as: high performance polymers-based nanocomposites, liquid crystal polymers, polyamide 4, 6, polyamideimide, polyacrylamide, polyacrylamide-based composites for different applications, polybenzimidazole, polycyclohexylene dimethyl terephthalate, polyetheretherketone, polyetherimide, polyetherketoneketone, polyethersulfone, polyphenylene sulphide, polyphenylsulfone, polyphthalamide, Polysulfone, self-reinforced polyphenylene, thermoplastic polyimide.

High Performance Polymers and Their Nanocomposites

by Visakh P. M. Semkin A. O.

High Performance Polymers and Their Nanocomposites summarizes many of the recent research accomplishments in the area of high performance polymers, such as: high performance polymers-based nanocomposites, liquid crystal polymers, polyamide 4, 6, polyamideimide, polyacrylamide, polyacrylamide-based composites for different applications, polybenzimidazole, polycyclohexylene dimethyl terephthalate, polyetheretherketone, polyetherimide, polyetherketoneketone, polyethersulfone, polyphenylene sulphide, polyphenylsulfone, polyphthalamide, Polysulfone, self-reinforced polyphenylene, thermoplastic polyimide.

High Performance Polymers and Engineering Plastics

by Vikas Mittal

This book describes advances in synthesis, processing, and technology of environmentally friendly polymers generated from renewable resources. With contents based on a wide range of functional monomers and contributions from eminent researchers, this volume demonstrates the design, synthesis, properties and applications of plant oil based polymers, presenting an elaborate review of acid mediated polymerization techniques for the generation of green polymers. Chemical engineers are provided with state-of-the-art information that acts to further progress research in this direction.

High Performance Polymers and Engineering Plastics

by Vikas Mittal

This book describes advances in synthesis, processing, and technology of environmentally friendly polymers generated from renewable resources. With contents based on a wide range of functional monomers and contributions from eminent researchers, this volume demonstrates the design, synthesis, properties and applications of plant oil based polymers, presenting an elaborate review of acid mediated polymerization techniques for the generation of green polymers. Chemical engineers are provided with state-of-the-art information that acts to further progress research in this direction.

Refine Search

Showing 65,901 through 65,925 of 100,000 results