Browse Results

Showing 31,026 through 31,050 of 85,954 results

Evolutionary Computation in Combinatorial Optimization: 21st European Conference, EvoCOP 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings (Lecture Notes in Computer Science #12692)

by Christine Zarges Sébastien Verel

This book constitutes the refereed proceedings of the 21st European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2021, held as part of Evo*2021, as Virtual Event, in April 2021, co-located with the Evo*2021 events: EvoMUSART, EvoApplications, and EuroGP. The 14 revised full papers presented in this book were carefully reviewed and selected from 42 submissions. They cover a wide spectrum of topics, ranging from the foundations of evolutionary algorithms and other search heuristics to their accurate design and application to combinatorial optimization problems. Fundamental and methodological aspects deal with runtime analysis, the structural properties of fitness landscapes, the study of core components of metaheuristics, the clever design of their search principles, and their careful selection and configuration. Applications cover problem domains such as scheduling, routing, search-based software engineering and general graph problems. The range of topics covered in this volume reflects the current state of research in the fields of evolutionary computation and combinatorial optimization.

Evolutionary Computation in Data Mining (Studies in Fuzziness and Soft Computing #163)

by Ashish Ghosh

Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search in the space of candidate solutions (for instance, rules or another form of knowledge representation).

Evolutionary Computation in Dynamic and Uncertain Environments (Studies in Computational Intelligence #51)

by Shengxiang Yang Yew-Soon Ong Yaochu Jin

This book compiles recent advances of evolutionary algorithms in dynamic and uncertain environments within a unified framework. The book is motivated by the fact that some degree of uncertainty is inevitable in characterizing any realistic engineering systems. Discussion includes representative methods for addressing major sources of uncertainties in evolutionary computation, including handle of noisy fitness functions, use of approximate fitness functions, search for robust solutions, and tracking moving optimums.

Evolutionary Computation in Economics and Finance (Studies in Fuzziness and Soft Computing #100)

by Shu-Heng Chen

After a decade's development, evolutionary computation (EC) proves to be a powerful tool kit for economic analysis. While the demand for this equipment is increasing, there is no volume exclusively written for economists. This volume for the first time helps economists to get a quick grasp on how EC may support their research. A comprehensive coverage of the subject is given, that includes the following three areas: game theory, agent-based economic modelling and financial engineering. Twenty leading scholars from each of these areas contribute a chapter to the volume. The reader will find himself treading the path of the history of this research area, from the fledgling stage to the burgeoning era. The results on games, labour markets, pollution control, institution and productivity, financial markets, trading systems design and derivative pricing, are new and interesting for different target groups. The book also includes informations on web sites, conferences, and computer software.

Evolutionary Computation in Gene Regulatory Network Research (Wiley Series in Bioinformatics)

by Hitoshi Iba Nasimul Noman

Introducing a handbook for gene regulatory network research using evolutionary computation, with applications for computer scientists, computational and system biologists This book is a step-by-step guideline for research in gene regulatory networks (GRN) using evolutionary computation (EC). The book is organized into four parts that deliver materials in a way equally attractive for a reader with training in computation or biology. Each of these sections, authored by well-known researchers and experienced practitioners, provides the relevant materials for the interested readers. The first part of this book contains an introductory background to the field. The second part presents the EC approaches for analysis and reconstruction of GRN from gene expression data. The third part of this book covers the contemporary advancements in the automatic construction of gene regulatory and reaction networks and gives direction and guidelines for future research. Finally, the last part of this book focuses on applications of GRNs with EC in other fields, such as design, engineering and robotics. • Provides a reference for current and future research in gene regulatory networks (GRN) using evolutionary computation (EC) • Covers sub-domains of GRN research using EC, such as expression profile analysis, reverse engineering, GRN evolution, applications • Contains useful contents for courses in gene regulatory networks, systems biology, computational biology, and synthetic biology • Delivers state-of-the-art research in genetic algorithms, genetic programming, and swarm intelligence Evolutionary Computation in Gene Regulatory Network Research is a reference for researchers and professionals in computer science, systems biology, and bioinformatics, as well as upper undergraduate, graduate, and postgraduate students. Hitoshi Iba is a Professor in the Department of Information and Communication Engineering, Graduate School of Information Science and Technology, at the University of Tokyo, Toyko, Japan. He is an Associate Editor of the IEEE Transactions on Evolutionary Computation and the journal of Genetic Programming and Evolvable Machines. Nasimul Noman is a lecturer in the School of Electrical Engineering and Computer Science at the University of Newcastle, NSW, Australia. From 2002 to 2012 he was a faculty member at the University of Dhaka, Bangladesh. Noman is an Editor of the BioMed Research International journal. His research interests include computational biology, synthetic biology, and bioinformatics.

Evolutionary Computation in Gene Regulatory Network Research (Wiley Series in Bioinformatics)

by Hitoshi Iba Nasimul Noman

Introducing a handbook for gene regulatory network research using evolutionary computation, with applications for computer scientists, computational and system biologists This book is a step-by-step guideline for research in gene regulatory networks (GRN) using evolutionary computation (EC). The book is organized into four parts that deliver materials in a way equally attractive for a reader with training in computation or biology. Each of these sections, authored by well-known researchers and experienced practitioners, provides the relevant materials for the interested readers. The first part of this book contains an introductory background to the field. The second part presents the EC approaches for analysis and reconstruction of GRN from gene expression data. The third part of this book covers the contemporary advancements in the automatic construction of gene regulatory and reaction networks and gives direction and guidelines for future research. Finally, the last part of this book focuses on applications of GRNs with EC in other fields, such as design, engineering and robotics. • Provides a reference for current and future research in gene regulatory networks (GRN) using evolutionary computation (EC) • Covers sub-domains of GRN research using EC, such as expression profile analysis, reverse engineering, GRN evolution, applications • Contains useful contents for courses in gene regulatory networks, systems biology, computational biology, and synthetic biology • Delivers state-of-the-art research in genetic algorithms, genetic programming, and swarm intelligence Evolutionary Computation in Gene Regulatory Network Research is a reference for researchers and professionals in computer science, systems biology, and bioinformatics, as well as upper undergraduate, graduate, and postgraduate students. Hitoshi Iba is a Professor in the Department of Information and Communication Engineering, Graduate School of Information Science and Technology, at the University of Tokyo, Toyko, Japan. He is an Associate Editor of the IEEE Transactions on Evolutionary Computation and the journal of Genetic Programming and Evolvable Machines. Nasimul Noman is a lecturer in the School of Electrical Engineering and Computer Science at the University of Newcastle, NSW, Australia. From 2002 to 2012 he was a faculty member at the University of Dhaka, Bangladesh. Noman is an Editor of the BioMed Research International journal. His research interests include computational biology, synthetic biology, and bioinformatics.

Evolutionary Computation in Practice (Studies in Computational Intelligence #88)

by Baydar Rajkumar Roy Tina Yu Lawrence Davis

This book is loaded with examples in which computer scientists and engineers have used evolutionary computation - programs that mimic natural evolution - to solve many real-world problems. They aren’t abstract, mathematically intensive papers, but accounts of solving important problems, including tips from the authors on how to avoid common pitfalls, maximize the effectiveness and efficiency of the search process, and many other practical suggestions.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 10th European Conference, EvoBIO 2012, Málaga, Spain, April 11-13, 2012, Proceedings (Lecture Notes in Computer Science #7246)

by Mario Giacobini Leonardo Vanneschi William S. Bush

This book constitutes the refereed proceedings of the 10th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2012, held in Málaga, Spain, in April 2012 co-located with the Evo* 2012 events. The 15 revised full papers presented together with 8 poster papers were carefully reviewed and selected from numerous submissions. Computational Biology is a wide and varied discipline, incorporating aspects of statistical analysis, data structure and algorithm design, machine learning, and mathematical modeling toward the processing and improved understanding of biological data. Experimentalists now routinely generate new information on such a massive scale that the techniques of computer science are needed to establish any meaningful result. As a consequence, biologists now face the challenges of algorithmic complexity and tractability, and combinatorial explosion when conducting even basic analyses.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 5th European Conference, EvoBIO 2007, Valencia, Spain, April 11-13, 2007, Proceedings (Lecture Notes in Computer Science #4447)

by Elena Marchiori Jason H. Moore Jagath C. Rajapakse

This book constitutes the refereed proceedings of the 5th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2007, held in Valencia, Spain, April 2007. Coverage brings together experts in computer science with experts in bioinformatics and the biological sciences. It presents contributions on fundamental and theoretical issues along with papers dealing with different applications areas.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 7th European Conference, EvoBIO 2009 Tübingen, Germany, April 15-17, 2009 Proceedings (Lecture Notes in Computer Science #5483)

by Clara Pizzuti Marylyn D. Ritchie Mario Giacobini

This book constitutes the refereed proceedings of the 7th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2009, held in Tübingen, Germany, in April 2009 colocated with the Evo* 2009 events. The 17 revised full papers were carefully reviewed and selected from 44 submissions. EvoBio is the premiere European event for experts in computer science meeting with experts in bioinformatics and the biological sciences, all interested in the interface between evolutionary computation, machine learning, data mining, bioinformatics, and computational biology. Topics addressed by the papers include biomarker discovery, cell simulation and modeling, ecological modeling, uxomics, gene networks, biotechnology, metabolomics, microarray analysis, phylogenetics, protein interactions, proteomics, sequence analysis and alignment, as well as systems biology.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 9th European Conference, EvoBIO 2011, Torino, Italy, April 27-29, 2011, Proceedings (Lecture Notes in Computer Science #6623)

by Clara Pizzuti Marylyn D. Ritchie Mario Giacobini

This book constitutes the refereed proceedings of the 9th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2011, held in Torino, Italy, in April 2011 co-located with the Evo* 2011 events. The 12 revised full papers presented together with 7 poster papers were carefully reviewed and selected from numerous submissions. All papers included topics of interest such as biomarker discovery, cell simulation and modeling, ecological modeling, fluxomics, gene networks, biotechnology, metabolomics, microarray analysis, phylogenetics, protein interactions, proteomics, sequence analysis and alignment, and systems biology.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 11th European Conference, EvoBIO 2013, Vienna, Austria, April 3-5, 2013, Proceedings (Lecture Notes in Computer Science #7833)

by Leonardo Vanneschi William S. Bush Mario Giacobini

This book constitutes the refereed proceedings of the 11th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2013, held in Vienna, Austria, in April 2013, colocated with the Evo* 2013 events EuroGP, EvoCOP, EvoMUSART and EvoApplications. The 10 revised full papers presented together with 9 poster papers were carefully reviewed and selected from numerous submissions. The papers cover a wide range of topics in the field of biological data analysis and computational biology. They address important problems in biology, from the molecular and genomic dimension to the individual and population level, often drawing inspiration from biological systems in oder to produce solutions to biological problems.

Evolutionary Computation Techniques: A Comparative Perspective (Studies in Computational Intelligence #686)

by Erik Cuevas Valentín Osuna Diego Oliva

This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains. Particularly focusing on recently developed algorithms, it is designed so that each chapter can be read independently. Several comparisons among EC techniques have been reported in the literature, however, they all suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. In each chapter, a complex engineering optimization problem is posed, and then a particular EC technique is presented as the best choice, according to its search characteristics. Lastly, a set of experiments is conducted in order to compare its performance to other popular EC methods.

Evolutionary Computation with Biogeography-based Optimization

by Haiping Ma Dan Simon

Evolutionary computation algorithms are employed to minimize functions with large number of variables. Biogeography-based optimization (BBO) is an optimization algorithm that is based on the science of biogeography, which researches the migration patterns of species. These migration paradigms provide the main logic behind BBO. Due to the cross-disciplinary nature of the optimization problems, there is a need to develop multiple approaches to tackle them and to study the theoretical reasoning behind their performance. This book explains the mathematical model of BBO algorithm and its variants created to cope with continuous domain problems (with and without constraints) and combinatorial problems.

Evolutionary Computation with Biogeography-based Optimization

by Haiping Ma Dan Simon

Evolutionary computation algorithms are employed to minimize functions with large number of variables. Biogeography-based optimization (BBO) is an optimization algorithm that is based on the science of biogeography, which researches the migration patterns of species. These migration paradigms provide the main logic behind BBO. Due to the cross-disciplinary nature of the optimization problems, there is a need to develop multiple approaches to tackle them and to study the theoretical reasoning behind their performance. This book explains the mathematical model of BBO algorithm and its variants created to cope with continuous domain problems (with and without constraints) and combinatorial problems.

Evolutionary Computations: New Algorithms and their Applications to Evolutionary Robots (Studies in Fuzziness and Soft Computing #147)

by Keigo Watanabe M.M.A. Hashem

Evolutionary computation, a broad field that includes genetic algorithms, evolution strategies, and evolutionary programming, has proven to offer well-suited techniques for industrial and management tasks - therefore receiving considerable attention from scientists and engineers during the last decade. This monograph develops and analyzes evolutionary algorithms that can be successfully applied to real-world problems such as robotic control. Although of particular interest to robotic control engineers, Evolutionary Computations also may interest the large audience of researchers, engineers, designers and graduate students confronted with complicated optimization tasks.

Evolutionary Computer Music

by Eduardo R. Miranda John Al Biles

This book discusses the applications of evolutionary computation to music and the tools needed to create and study such systems. These tools can be combined to create surrogate artificial worlds populated by interacting simulated organisms in which complex musical experiments can be performed. The book demonstrates that evolutionary systems can be used to create and to study musical compositions and cultures in ways that have never before been achieved.

Evolutionary Computer Vision: The First Footprints (Natural Computing Series)

by Gustavo Olague

This book explains the theory and application of evolutionary computer vision, a new paradigm where challenging vision problems can be approached using the techniques of evolutionary computing. This methodology achieves excellent results for defining fitness functions and representations for problems by merging evolutionary computation with mathematical optimization to produce automatic creation of emerging visual behaviors.In the first part of the book the author surveys the literature in concise form, defines the relevant terminology, and offers historical and philosophical motivations for the key research problems in the field. For researchers from the computer vision community, he offers a simple introduction to the evolutionary computing paradigm. The second part of the book focuses on implementing evolutionary algorithms that solve given problems using working programs in the major fields of low-, intermediate- and high-level computer vision.This book will be of value to researchers, engineers, and students in the fields of computer vision, evolutionary computing, robotics, biologically inspired mechatronics, electronics engineering, control, and artificial intelligence.

Evolutionary Computing and Artificial Intelligence: Essays Dedicated to Takao Terano on the Occasion of His Retirement (Communications in Computer and Information Science #999)

by Fernando Koch Atsushi Yoshikawa Shihan Wang Takao Terano

This Festschrift volume is published in honor of Takao Terano on the occasion of his retirement. Takao Terano is a leading expert in the areas of agent-based modelling, knowledge systems, evolutionary computation, and service science.The contributions in this volume reflect the breadth and impact of his work. The volume contains 12 full papers related to Takao Terano’s research. They deal with various aspects of artificial intelligence, multi-agent systems, collaborative and social computing, social networks, ubiquitous computing.

Evolutionary Computing and Mobile Sustainable Networks: Proceedings of ICECMSN 2020 (Lecture Notes on Data Engineering and Communications Technologies #53)

by V. Suma Noureddine Bouhmala Haoxiang Wang

This book features selected research papers presented at the International Conference on Evolutionary Computing and Mobile Sustainable Networks (ICECMSN 2020), held at the Sir M. Visvesvaraya Institute of Technology on 20–21 February 2020. Discussing advances in evolutionary computing technologies, including swarm intelligence algorithms and other evolutionary algorithm paradigms which are emerging as widely accepted descriptors for mobile sustainable networks virtualization, optimization and automation, this book is a valuable resource for researchers in the field of evolutionary computing and mobile sustainable networks.

Evolutionary Computing and Mobile Sustainable Networks: Proceedings of ICECMSN 2021 (Lecture Notes on Data Engineering and Communications Technologies #116)

by V. Suma Xavier Fernando Ke-Lin Du Haoxiang Wang

This book mainly reflects the recent research works in evolutionary computation technologies and mobile sustainable networks with a specific focus on computational intelligence and communication technologies that widely ranges from theoretical foundations to practical applications in enhancing the sustainability of mobile networks. Today, network sustainability has become a significant research domain in both academia and industries present across the globe. Also, the network sustainability paradigm has generated a solution for existing optimization challenges in mobile communication networks. Recently, the research advances in evolutionary computing technologies including swarm intelligence algorithms and other evolutionary algorithm paradigms are considered as the widely accepted descriptors for mobile sustainable networks virtualization, optimization, and automation. To deal with the emerging impacts on mobile communication networks, this book discusses about the state-of-the research works on developing a sustainable design and their implementation in mobile networks. With the advent of evolutionary computation algorithms, this book contributes varied research chapters to develop a new perspective on mobile sustainable networks.

Evolutionary Constrained Optimization (Infosys Science Foundation Series)

by Rituparna Datta Kalyanmoy Deb

This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful for classroom teaching and future research.

Evolutionary Data Clustering: Algorithms and Applications (Algorithms for Intelligent Systems)

by Ibrahim Aljarah Hossam Faris Seyedali Mirjalili

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Refine Search

Showing 31,026 through 31,050 of 85,954 results