- Table View
- List View
General Parabolic Mixed Order Systems in Lp and Applications (Operator Theory: Advances and Applications #239)
by Robert Denk Mario KaipIn this text, a theory for general linear parabolic partial differential equations is established which covers equations with inhomogeneous symbol structure as well as mixed-order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show well-posedness in Lp-Lq-Sobolev spaces in time and space for the linear problems (i.e., maximal regularity) which is the key step for the treatment of nonlinear problems. The theory is based on the concept of the Newton polygon and can cover equations which are not accessible by standard methods as, e.g., semigroup theory. Results are obtained in different types of non-integer Lp-Sobolev spaces as Besov spaces, Bessel potential spaces, and Triebel–Lizorkin spaces. The last-mentioned class appears in a natural way as traces of Lp-Lq-Sobolev spaces. We also present a selection of applications in the whole space and on half-spaces. Among others, we prove well-posedness of the linearizations of the generalized thermoelastic plate equation, the two-phase Navier–Stokes equations with Boussinesq–Scriven surface, and the Lp-Lq two-phase Stefan problem with Gibbs–Thomson correction.
The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point (Springer Tracts in Natural Philosophy #7)
by Eugene LeimanisIn the theory of motion of several coupled rigid bodies about a fixed point one can distinguish three basic ramifications. 1. The first, the so-called classical direction of investigations, is concerned with particular cases of integrability ot the equations of motion of a single rigid body about a fixed point,1 and with their geo metrical interpretation. This path of thought was predominant until the beginning of the 20th century and its most illustrious represen tatives are L. EULER (1707-1783), J L. LAGRANGE (1736-1813), L. POINSOT (1777-1859), S. V. KOVALEVSKAYA (1850-1891), and others. Chapter I of the present monograph intends to reflect this branch of investigations. For collateral reading on the general questions dealt with in this chapter the reader is referred to the following textbooks and reports: A. DOMOGAROV [1J, F. KLEIN and A. SOMMERFELD [11, 1 , 1 J, A. G. 2 3 GREENHILL [10J, A. GRAY [1J, R. GRAMMEL [4 J, E. J. ROUTH [21' 2 , 1 2 31' 32J, J. B. SCARBOROUGH [1J, and V. V. GOLUBEV [1, 2J.
General Reference Architecture Frameworks (Studies in Systems, Decision and Control #73)
by Octavian IordacheStudying high complexity projects implementation is the object of this book. Multiple interactions and emergences are the core of higher complexity and of associated models and projects. The starting point of our approach is the observed similarity or isomorphism of roadmaps toward higher complexity and of reference architectures for different domains of reality. The objective is to propose a General Polytopic Roadmaps (GPTR) and a General Reference Architecture Framework (GRAF) and use these for 8D Program implementation. The GPTR shows the stages: 0D, 1D, 2D, 4D, and 8D. The book is divided into 8 chapters. Chapter 1 introduces the GRAF as a 4D of 4D polytope. Chapter 2 emphasizes the role for the dialogue of processes in duality, of the logic of contradiction, of iteration and of included middle to face high complexity. Chapter 3 refers to operations and equipments of engineering interest as permutations, mixings and separations. Chapter 4 refers to modeling and simulation. Chapter 5 concerns creative design models. Dual process design, and processes integration are presented. Industry 4.0, future developments to Industry 8.0 and chemical engineering paradigms are evaluated in Chapter 6. Chapter 7 focuses on complex systems as production systems of systems architecture frameworks, decision models, operations processes, and cyber-physical social systems. Chapter 8 discusses implementation of high complexity projects for different levels of reality. The book is useful to engineers, researchers, entrepreneurs, and students in different branches of production, science, and engineering of high complexity.
General Relativity (Graduate Texts in Physics)
by Norbert StraumannThis book provides a completely revised and expanded version of the previous classic edition ‘General Relativity and Relativistic Astrophysics’. In Part I the foundations of general relativity are thoroughly developed, while Part II is devoted to tests of general relativity and many of its applications. Binary pulsars – our best laboratories for general relativity – are studied in considerable detail. An introduction to gravitational lensing theory is included as well, so as to make the current literature on the subject accessible to readers. Considerable attention is devoted to the study of compact objects, especially to black holes. This includes a detailed derivation of the Kerr solution, Israel’s proof of his uniqueness theorem, and a derivation of the basic laws of black hole physics. Part II ends with Witten’s proof of the positive energy theorem, which is presented in detail, together with the required tools on spin structures and spinor analysis. In Part III, all of the differential geometric tools required are developed in detail. A great deal of effort went into refining and improving the text for the new edition. New material has been added, including a chapter on cosmology. The book addresses undergraduate and graduate students in physics, astrophysics and mathematics. It utilizes a very well structured approach, which should help it continue to be a standard work for a modern treatment of gravitational physics. The clear presentation of differential geometry also makes it useful for work on string theory and other fields of physics, classical as well as quantum.
General Relativity: With Applications to Astrophysics (Theoretical and Mathematical Physics)
by Norbert StraumannThe foundations are thoroughly developed together with the required mathematical background from differential geometry developed in Part III. The author also discusses the tests of general relativity in detail, including binary pulsars, with much space is devoted to the study of compact objects, especially to neutron stars and to the basic laws of black-hole physics. This well-structured text and reference enables readers to easily navigate through the various sections as best matches their backgrounds and perspectives, whether mathematical, physical or astronomical. Very applications oriented, the text includes very recent results, such as the supermassive black-hole in our galaxy and first double pulsar system
General Relativity: The Theoretical Minimum
by Leonard Susskind Andre CabannesThe latest volume in The New York Times bestselling physics series explains Einstein's masterpiece: the general theory of relativityHe taught us classical mechanics, quantum mechanics and special relativity. Now, physicist Leonard Susskind, assisted by a new collaborator, André Cabannes, returns to tackle Einstein's general theory of relativity. Starting from the equivalence principle and covering the necessary mathematics of Riemannian spaces and tensor calculus, Susskind and Cabannes explain the link between gravity and geometry. They delve into black holes, establish Einstein field equations and solve them to describe gravity waves. The authors provide vivid explanations that, to borrow a phrase from Einstein himself, are as simple as possible (but no simpler).An approachable yet rigorous introduction to one of the most important topics in physics, General Relativity is a must-read for anyone who wants a deeper knowledge of the universe's real structure.
General Relativity (Springer Undergraduate Mathematics Series)
by N.M.J. WoodhouseBased on a course taught for years at Oxford, this book offers a concise exposition of the central ideas of general relativity. The focus is on the chain of reasoning that leads to the relativistic theory from the analysis of distance and time measurements in the presence of gravity, rather than on the underlying mathematical structure. Includes links to recent developments, including theoretical work and observational evidence, to encourage further study.
General Relativity and Cosmology: A First Encounter (Graduate Texts in Physics)
by Ronald J. AdlerGravitational physics has now become a mainstream topic in physics and physics teaching. In particular cosmology and gravitational wave physics are at the focus of a great deal of current research. Thus it is important to introduce students to General Relativity as soon as reasonable. This textbook offers a brief but comprehensive treatment accessible to advanced undergraduate students, graduate students, and any physicist or mathematician interested in understanding the material in a short time. The author, an experienced teacher of the subject, has included numerous examples and exercises to help students consolidate the ideas they have learned.
General Relativity and its Applications: Black Holes, Compact Stars and Gravitational Waves
by Valeria Ferrari Leonardo Gualtieri Paolo PaniContaining the latest, groundbreaking discoveries in the field, this text outlines the basics of Einstein’s theory of gravity with a focus on its most important astrophysical consequences, including stellar structures, black holes and the physics of gravitational waves. Blending advanced topics - usually not found in introductory textbooks - with examples, pedagogical boxes, mathematical tools and practical applications of the theory, this textbook maximises learning opportunities and is ideal for master and graduate students in Physics and Astronomy. Key features:• Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field.• Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks.• Fully up-to-date, containing the latest developments and discoveries in the field.
General Relativity and its Applications: Black Holes, Compact Stars and Gravitational Waves
by Valeria Ferrari Leonardo Gualtieri Paolo PaniContaining the latest, groundbreaking discoveries in the field, this text outlines the basics of Einstein’s theory of gravity with a focus on its most important astrophysical consequences, including stellar structures, black holes and the physics of gravitational waves. Blending advanced topics - usually not found in introductory textbooks - with examples, pedagogical boxes, mathematical tools and practical applications of the theory, this textbook maximises learning opportunities and is ideal for master and graduate students in Physics and Astronomy. Key features:• Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field.• Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks.• Fully up-to-date, containing the latest developments and discoveries in the field.
General Relativity and Matter: A Spinor Field Theory from Fermis to Light-Years (Fundamental Theories of Physics #1)
by M. SachsThere exist essentially two levels of investigation in theoretical physics. One is primarily descriptive, concentrating as it does on useful phenomenological approaches toward the most economical classifications of large classes of experimental data on particular phenomena. The other, whose thrust is explanatory, has as its aim the formulation of those underlying hypotheses and their mathematical representations that are capable of furnishing, via deductive analysis, predictions - constituting the particulars of universals (the asserted laws)- about the phenomena under consideration. The two principal disciplines of contemporary theoretical physics - quantum theory and the theory of relativity - fall basically into these respective categories. General Relativity and Matter represents a bold attempt by its author to formulate, in as transparent and complete a way as possible, a fundamental theory of matter rooted in the theory of relativity - where the latter is viewed as providing an explanatory level of understanding for probing the fundamental nature ofmatter indomainsranging all the way fromfermis and lessto light years and more. We hasten to add that this assertion is not meant to imply that the author pretends with his theory to encompass all ofphysics or even a tiny part of the complete objective understanding of our accessible universe. But he does adopt the philosophy that underlying all natural phenomena there is a common conceptualbasis,and then proceeds to investigate how far such a unified viewcan take us at its present stage of development.
General Relativity and Relativistic Astrophysics (Theoretical and Mathematical Physics)
by Norbert StraumannIn 1979 I gave graduate courses at the University of Zurich and lectured in the 'Troisieme Cycle de la Suisse Romande' (a consortium offour uni versities in the french-speaking part of Switzerland), and these lectures were the basis of the 'Springer Lecture Notes in Physics', Volume 150, published in 1981. This text appeared in German, because there have been few modern expositions of the general theory of relativity in the mother tongue of its only begetter. Soon after the book appeared, W. Thirring asked me to prepare an English edition for the 'Texts and Mono graphs in Physics'. Fortunately E. Borie agreed to translate the original German text into English. An excellent collaboration allowed me to re vise and add to the contents of the book. I have updated and improved the original text and have added a number of new sections, mostly on astrophysical topics. In particular, in collaboration with M. Camenzind I have included a chapter on spherical and disk accretion onto compact objects. This book divides into three parts. Part I develops the mathematical tools used in the general theory of relativity. Since I wanted to keep this part short, but reasonably self-contained, I have adopted the dry style of most modern mathematical texts. Readers who have never before been confronted with differential geometry will find the exposition too ab stract and will miss motivations of the basic concepts and constructions.
General Relativity, Cosmology and Astrophysics: Perspectives 100 years after Einstein's stay in Prague (Fundamental Theories of Physics #177)
by Jiří Bičák Tomáš LedvinkaThe articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers.The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.
General Relativity for Mathematicians (Graduate Texts in Mathematics #48)
by R.K. Sachs H.-H. WuThis is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
The General Theory of Homogenization: A Personalized Introduction (Lecture Notes of the Unione Matematica Italiana #7)
by Luc TartarHomogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of François Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science, new mathematical tools must be introduced, like the author’s H-measures, variants by Patrick Gérard, and others yet to be discovered.
General Theory of Light Propagation and Imaging Through the Atmosphere (Springer Series in Optical Sciences #196)
by T. Stewart McKechnieThis book lays out a new, general theory of light propagation and imaging through Earth’s turbulent atmosphere. Current theory is based on the – now widely doubted – assumption of Kolmogorov turbulence. The new theory is based on a generalized atmosphere, the turbulence characteristics of which can be established, as needed, from readily measurable properties of point-object, or star, images.The pessimistic resolution predictions of Kolmogorov theory led to lax optical tolerance prescriptions for large ground-based astronomical telescopes which were widely adhered to in the 1970s and 1980s. Around 1990, however, it became clear that much better resolution was actually possible, and Kolmogorov tolerance prescriptions were promptly abandoned. Most large telescopes built before 1990 have had their optics upgraded (e.g., the UKIRT instrument) and now achieve, without adaptive optics (AO), almost an order of magnitude better resolution than before.As well as providing a more comprehensive and precise understanding of imaging through the atmosphere with large telescopes (both with and without AO), the new general theory also finds applications in the areas of laser communications and high-energy laser beam propagation.
General Theory of Light Propagation and Imaging Through the Atmosphere (Progress in Optical Science and Photonics #20)
by T. Stewart McKechnieThis 2nd edition lays out an updated version of the general theory of light propagation and imaging through Earth’s turbulent atmosphere initially developed in the late ‘70s and ‘80s, with additional applications in the areas of laser communications and high-energy laser beam propagation. New material includes a chapter providing a comprehensive mathematical tool set for precisely characterizing image formation with the anticipated Extremely Large Telescopes (ELTS), enabling a staggering range of star image shapes and sizes; existing chapters rewritten or modified so as to supplement the mathematics with clearer physical insight through written and graphical means; a history of the development of present-day understanding of light propagation and imaging through the atmosphere as represented by the general theory described. Beginning with the rudimentary, geometrical-optics based understanding of a century ago, it describes advances made in the 1960s, including the development of the ‘Kolmogorov theory,’ the deficiencies of which undermined its credibility, but not before it had done enormous damage, such as construction of a generation of underperforming ‘light bucket’ telescopes. The general theory requires no a priori turbulence assumptions. Instead, it provides means for calculating the turbulence properties directly from readily-measurable properties of star images.
The General Theory of Relativity: A Mathematical Exposition
by Anadijiban Das Andrew DeBenedictisThe General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: tensor analysis the special theory of relativity the general theory of relativity and Einstein’s field equations spherically symmetric solutions and experimental confirmations static and stationary space-time domains black holes cosmological models algebraic classifications and the Newman-Penrose equations the coupled Einstein-Maxwell-Klein-Gordon equations appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars.Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Ireland, Jadavpur University, India, Carnegie-Mellon University, USA, and Simon Fraser University, Canada. His major areas of research include, among diverse topics, the mathematical aspects of general relativity theory.Andrew DeBenedictis has taught courses in Theoretical Physics at Simon Fraser University, Canada, and is also a member of The Pacific Institute for the Mathematical Sciences. His research interests include quantum gravity, classical gravity, and semi-classical gravity.
Generalised Thermostatistics
by Jan NaudtsThe domain of non-extensive thermostatistics has been subject to intensive research over the past twenty years and has matured significantly. Generalised Thermostatistics cuts through the traditionalism of many statistical physics texts by offering a fresh perspective and seeking to remove elements of doubt and confusion surrounding the area.The book is divided into two parts - the first covering topics from conventional statistical physics, whilst adopting the perspective that statistical physics is statistics applied to physics. The second developing the formalism of non-extensive thermostatistics, of which the central role is played by the notion of a deformed exponential family of probability distributions.Presented in a clear, consistent, and deductive manner, the book focuses on theory, part of which is developed by the author himself, but also provides a number of references towards application-based texts.Written by a leading contributor in the field, this book will provide a useful tool for learning about recent developments in generalized versions of statistical mechanics and thermodynamics, especially with respect to self-study. Written for researchers in theoretical physics, mathematics and statistical mechanics, as well as graduates of physics, mathematics or engineering. A prerequisite knowledge of elementary notions of statistical physics and a substantial mathematical background are required.
Generalized Dynamics of Soft-Matter Quasicrystals: Mathematical models and solutions (Springer Series in Materials Science #260)
by Tian-You FanThe book systematically introduces the mathematical models and solutions of generalized hydrodynamics of soft-matter quasicrystals (SMQ). It provides methods for solving the initial-boundary value problems in these systems. The solutions obtained demonstrate the distribution, deformation and motion of the soft-matter quasicrystals, and determine the stress, velocity and displacement fields. The interactions between phonons, phasons and fluid phonons are discussed in some fundamental materials samples. Mathematical solutions for solid and soft-matter quasicrystals are compared, to help readers to better understand the featured properties of SMQ.
Generalized Dynamics of Soft-Matter Quasicrystals: Mathematical Models, Solutions and Applications (Springer Series in Materials Science #260)
by Tian-You Fan Wenge Yang Hui Cheng Xiao-Hong SunThis book highlights the mathematical models and solutions of the generalized dynamics of soft-matter quasicrystals (SMQ) and introduces possible applications of the theory and methods. Based on the theory of quasiperiodic symmetry and symmetry breaking, the book treats the dynamics of individual quasicrystal systems by reducing them to nonlinear partial differential equations and then provides methods for solving the initial-boundary value problems in these equations. The solutions obtained demonstrate the distribution, deformation and motion of SMQ and determine the stress, velocity and displacement fields. The interactions between phonons, phasons and fluid phonons are discussed in some fundamental materials samples. The reader benefits from a detailed comparison of the mathematical solutions for both solid and soft-matter quasicrystals, gaining a deeper understanding of the universal properties of SMQ. The second edition covers the latest research progress on quasicrystals in topics such as thermodynamic stability, three-dimensional problems and solutions, rupture theory, and the photonic band-gap and its applications. These novel chapters make the book an even more useful and comprehensive reference guide for researchers in condensed matter physics, chemistry and materials sciences.
Generalized Feynman Amplitudes. (AM-62), Volume 62
by Eugene R. SpeerThis book contains a valuable discussion of renormalization through the addition of counterterms to the Lagrangian, giving the first complete proof of the cancellation of all divergences in an arbitrary interaction. The author also introduces a new method of renormalizing an arbitrary Feynman amplitude, a method that is simpler than previous approaches and can be used to study the renormalized perturbation series in quantum field theory.
Generalized Functions: Theory and Applications
by Ram P. KanwalProvides a more cohesive and sharply focused treatment of fundamental concepts and theoretical background material, with particular attention given to better delineating connections to varying applications Exposition driven by additional examples and exercises