Browse Results

Showing 13,726 through 13,750 of 55,640 results

Discrete Mathematics with Coding (Textbooks in Mathematics)

by Hugo D Junghenn

This book, for a first undergraduate course in Discrete Mathematics, systematically exploits the relationship between discrete mathematics and computer programming. Unlike most discrete mathematics texts focusing on one of the other, the book explores the rich and important connection between these two disciplines and shows how each discipline reinforces and enhances the other. The mathematics in the book is self-contained, requiring only a good background in precalculus and some mathematical maturity. New mathematical topics are introduced as needed. The coding language used is VBA Excel. The language is easy to learn, has intuitive commands, and the reader can develop interesting programs from the outset. Additionally, the spreadsheet platform in Excel makes for convenient and transparent data input and output and provides a powerful venue for complex data manipulation. Manipulating data is greatly simplified using spreadsheet features and visualizing the data can make programming and debugging easier. The VBA language is seamlessly integrated into the spreadsheet environment with no other resources required. Furthermore, as some of the modules in the book show, intricate patterns, graphs, and animation in the form of moving cells is possible. Features Introduces coding in VBA Excel assuming no previous coding experience. Develops programs in Linear Analysis, Logic, Combinatorics, Probability, and Number Theory. Contains over 90 fully tested and debugged programs. The code for these is as well as the exercises is available on the author's website. Contains numerous examples that gradually introduce the reader to coding techniques. Includes programs that solve systems of linear equations, linear programming problems, combinatorial problems, Venn diagram problems and programs that produce truth tables from logic statements and logic statements from switching and gate circuits, encrypt and decrypt messages and simulate probability experiments.

Discrete Mathematics with Ducks (Textbooks in Mathematics)

by Sarah-Marie Belcastro

Discrete Mathematics with Ducks, Second Edition is a gentle introduction for students who find the proofs and abstractions of mathematics challenging. At the same time, it provides stimulating material that instructors can use for more advanced students. The first edition was widely well received, with its whimsical writing style and numerous exercises and materials that engaged students at all levels. The new, expanded edition continues to facilitate effective and active learning. It is designed to help students learn about discrete mathematics through problem-based activities. These are created to inspire students to understand mathematics by actively practicing and doing, which helps students better retain what they’ve learned. As such, each chapter contains a mixture of discovery-based activities, projects, expository text, in-class exercises, and homework problems. The author’s lively and friendly writing style is appealing to both instructors and students alike and encourages readers to learn. The book’s light-hearted approach to the subject is a guiding principle and helps students learn mathematical abstraction. Features: The book’s Try This! sections encourage students to construct components of discussed concepts, theorems, and proofs Provided sets of discovery problems and illustrative examples reinforce learning Bonus sections can be used by instructors as part of their regular curriculum, for projects, or for further study

Discrete Mathematics with Ducks

by Sarah-Marie Belcastro

Containing exercises and materials that engage students at all levels, Discrete Mathematics with Ducks presents a gentle introduction for students who find the proofs and abstractions of mathematics challenging. This classroom-tested text uses discrete mathematics as the context for introducing proofwriting. Facilitating effective and active learni

Discrete Mathematics with Ducks: Srrsleh (Textbooks in Mathematics)

by sarah-marie belcastro

Discrete Mathematics with Ducks, Second Edition is a gentle introduction for students who find the proofs and abstractions of mathematics challenging. At the same time, it provides stimulating material that instructors can use for more advanced students. The first edition was widely well received, with its whimsical writing style and numerous exercises and materials that engaged students at all levels. The new, expanded edition continues to facilitate effective and active learning. It is designed to help students learn about discrete mathematics through problem-based activities. These are created to inspire students to understand mathematics by actively practicing and doing, which helps students better retain what they’ve learned. As such, each chapter contains a mixture of discovery-based activities, projects, expository text, in-class exercises, and homework problems. The author’s lively and friendly writing style is appealing to both instructors and students alike and encourages readers to learn. The book’s light-hearted approach to the subject is a guiding principle and helps students learn mathematical abstraction. Features: The book’s Try This! sections encourage students to construct components of discussed concepts, theorems, and proofs Provided sets of discovery problems and illustrative examples reinforce learning Bonus sections can be used by instructors as part of their regular curriculum, for projects, or for further study

Discrete Mathematics with Graph Theory

by Santosh Kumar Yadav

This book is designed to meet the requirement of undergraduate and postgraduate students pursuing computer science, information technology, mathematical science, and physical science course. No formal prerequisites are needed to understand the text matter except a very reasonable background in college algebra. The text contains in-depth coverage of all major topics proposed by professional institutions and universities for a discrete mathematics course. It emphasizes on problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof technique, algorithmic development, algorithm correctness, and numeric computations. A sufficient amount of theory is included for those who enjoy the beauty in development of the subject and a wealth of applications as well as for those who enjoy the power of problem-solving techniques. Biographical sketches of nearly 25 mathematicians and computer scientists who have played a significant role in the development of the field are threaded into the text to provide a human dimension and attach a human face to major discoveries. Each section of the book contains a generous selection of carefully tailored examples to classify and illuminate various concepts and facts. Theorems are backbone of mathematics. Consequently, this book contains the various proof techniques, explained and illustrated in details. Most of the concepts, definitions, and theorems in the book are illustrated with appropriate examples. Proofs shed additional light on the topic and enable students to sharpen thin problem-solving skills. Each chapter ends with a summary of important vocabulary, formulae, properties developed in the chapter, and list of selected references for further exploration and enrichment.

Discrete Maths and Its Applications Global Edition 7e (UK Higher Education Mathematics Mathematics)

by Kenneth Rosen

We are pleased to present this Global Edition which has been developed specifically to meet the needs of international students of discrete mathematics. In addition to great depth in key areas and a broad range of real-world applications across multiple disciplines, we have added new material to make the content more relevant and improve learning outcomes for the international student.This Global Edition includes: An entire new chapter on Algebraic Structures and Coding Theory New and expanded sections within chapters covering Foundations, Basic Structures, and Advanced Counting Techniques Special online only chapters on Boolean Algebra and Modeling Computation New and revised problems for the international student integrating alternative methods and solutions.This Global Edition has been adapted to meet the needs of courses outside of the United States and does not align with the instructor and student resources available with the US edition.

Discrete Mechanics: Concepts and Applications (Iste Ser.)

by Jean-Paul Caltagirone

The discrete vision of mechanics is based on the founding ideas of Galileo and the principles of relativity and equivalence, which postulate the equality between gravitational mass and inertial mass. To these principles are added the Hodge–Helmholtz decomposition, the principle of accumulation of constraints and the hypothesis of the duality of physical actions. These principles make it possible to establish the equation of motion based on the conservation of acceleration considered as an absolute quantity in a local frame of reference, in the form of a sum of the gradient of the scalar potential and the curl of the vector potential. These potentials, which represent the constraints of compression and rotation, are updated from the discrete operators. Discrete Mechanics: Concepts and Applications shows that this equation of discrete motion is representative of the compressible or incompressible flows of viscous or perfect fluids, the state of stress in an elastic solid or complex fluid and the propagation of nonlinear waves.

Discrete Mechanics: Concepts and Applications

by Jean-Paul Caltagirone

The discrete vision of mechanics is based on the founding ideas of Galileo and the principles of relativity and equivalence, which postulate the equality between gravitational mass and inertial mass. To these principles are added the Hodge–Helmholtz decomposition, the principle of accumulation of constraints and the hypothesis of the duality of physical actions. These principles make it possible to establish the equation of motion based on the conservation of acceleration considered as an absolute quantity in a local frame of reference, in the form of a sum of the gradient of the scalar potential and the curl of the vector potential. These potentials, which represent the constraints of compression and rotation, are updated from the discrete operators. Discrete Mechanics: Concepts and Applications shows that this equation of discrete motion is representative of the compressible or incompressible flows of viscous or perfect fluids, the state of stress in an elastic solid or complex fluid and the propagation of nonlinear waves.

Discrete Mechanics, Geometric Integration and Lie–Butcher Series: Dmgilbs, Madrid, May 2015 (Springer Proceedings in Mathematics & Statistics #267)

by Kurusch Ebrahimi-Fard María Barbero Liñán

This volume resulted from presentations given at the international “Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie–Butcher Series”, that took place at the Instituto de Ciencias Matemáticas (ICMAT) in Madrid, Spain. It combines overview and research articles on recent and ongoing developments, as well as new research directions. Why geometric numerical integration? In their article of the same title Arieh Iserles and Reinout Quispel, two renowned experts in numerical analysis of differential equations, provide a compelling answer to this question. After this introductory chapter a collection of high-quality research articles aim at exploring recent and ongoing developments, as well as new research directions in the areas of geometric integration methods for differential equations, nonlinear systems interconnections, and discrete mechanics. One of the highlights is the unfolding of modern algebraic and combinatorial structures common to those topics, which give rise to fruitful interactions between theoretical as well as applied and computational perspectives. The volume is aimed at researchers and graduate students interested in theoretical and computational problems in geometric integration theory, nonlinear control theory, and discrete mechanics.

Discrete Multivariate Analysis: Theory and Practice

by Yvonne M. Bishop Stephen E. Fienberg Paul W. Holland

“A welcome addition to multivariate analysis. The discussion is lucid and very leisurely, excellently illustrated with applications drawn from a wide variety of fields. A good part of the book can be understood without very specialized statistical knowledge. It is a most welcome contribution to an interesting and lively subject.” -- Nature Originally published in 1974, this book is a reprint of a classic, still-valuable text.

Discrete Optimization and Operations Research: 9th International Conference, DOOR 2016, Vladivostok, Russia, September 19-23, 2016, Proceedings (Lecture Notes in Computer Science #9869)

by Yury Kochetov Michael Khachay Vladimir Beresnev Evgeni Nurminski Panos Pardalos

This book constitutes the proceedings of the 9th International Conference on Discrete Optimization and Operations Research, DOOR 2016, held in Vladivostok, Russia, in September 2016. The 39 full papers presented in this volume were carefully reviewed and selected from 181 submissions. They were organized in topical sections named: discrete optimization; scheduling problems; facility location; mathematical programming; mathematical economics and games; applications of operational research; and short communications.

Discrete Optimization in Architecture: Building Envelope (SpringerBriefs in Architectural Design and Technology)

by Machi Zawidzki

This book explores the extremely modular systems that meet two criteria: they allow the creation of structurally sound free-form structures, and they are comprised of as few types of modules as possible. Divided into two parts, it presents Pipe-Z (PZ) and Truss-Z (TZ) systems. PZ is more fundamental and forms spatial mathematical knots by assembling one type of unit (PZM). The shape of PZ is controlled by relative twists of a sequence of congruent PZMs. TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. TZ structures are composed of four variations of a single basic unit subjected to affine transformations (mirror reflection, rotation and combination of both).

Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach (Studies in Fuzziness and Soft Computing)

by Adam Kasperski

Operations research often solves deterministic optimization problems based on elegantand conciserepresentationswhereall parametersarepreciselyknown. In the face of uncertainty, probability theory is the traditional tool to be appealed for, and stochastic optimization is actually a signi?cant sub-area in operations research. However, the systematic use of prescribed probability distributions so as to cope with imperfect data is partially unsatisfactory. First, going from a deterministic to a stochastic formulation, a problem may becomeintractable. Agoodexampleiswhengoingfromdeterministictostoch- tic scheduling problems like PERT. From the inception of the PERT method in the 1950’s, it was acknowledged that data concerning activity duration times is generally not perfectly known and the study of stochastic PERT was launched quite early. Even if the power of today’s computers enables the stochastic PERT to be addressed to a large extent, still its solutions often require simplifying assumptions of some kind. Another di?culty is that stochastic optimization problems produce solutions in the average. For instance, the criterion to be maximized is more often than not expected utility. This is not always a meaningful strategy. In the case when the underlying process is not repeated a lot of times, let alone being one-shot, it is not clear if this criterion is realistic, in particular if probability distributions are subjective. Expected utility was proposed as a rational criterion from ?rst principles by Savage. In his view, the subjective probability distribution was - sically an artefact useful to implement a certain ordering of solutions.

The Discrete Ordered Median Problem: Models and Solution Methods (Combinatorial Optimization #15)

by Patricia Dominguez-Marin

This is the first book about the discrete ordered median problem (DOMP), which unifies many classical and new facility location problems. Several exact and heuristic approaches are developed in this book in order to solve the DOMP. Audience: The book is suitable for researchers in location theory, and graduate students in combinatorial optimization.

Discrete Orthogonal Polynomials. (AM-164): Asymptotics and Applications (AM-164) (PDF)

by J. Baik T. Kriecherbauer Kenneth D.T-R McLaughlin Peter D. Miller

This book describes the theory and applications of discrete orthogonal polynomials--polynomials that are orthogonal on a finite set. Unlike other books, Discrete Orthogonal Polynomials addresses completely general weight functions and presents a new methodology for handling the discrete weights case. J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin & P. D. Miller focus on asymptotic aspects of general, nonclassical discrete orthogonal polynomials and set out applications of current interest. Topics covered include the probability theory of discrete orthogonal polynomial ensembles and the continuum limit of the Toda lattice. The primary concern throughout is the asymptotic behavior of discrete orthogonal polynomials for general, nonclassical measures, in the joint limit where the degree increases as some fraction of the total number of points of collocation. The book formulates the orthogonality conditions defining these polynomials as a kind of Riemann-Hilbert problem and then generalizes the steepest descent method for such a problem to carry out the necessary asymptotic analysis.

Discrete Probability (Undergraduate Texts in Mathematics)

by Hugh Gordon

Intended as a first course in probability at post-calculus level, this book is of special interest to students majoring in computer science as well as in mathematics. Since calculus is used only occasionally in the text, students who have forgotten their calculus can nevertheless easily understand the book, and its slow, gentle style and clear exposition will also appeal. Basic concepts such as counting, independence, conditional probability, random variables, approximation of probabilities, generating functions, random walks and Markov chains are all clearly explained and backed by many worked exercises. The 1,196 numerical answers to the 405 exercises, many with multiple parts, are included at the end of the book, and throughout, there are various historical comments on the study of probability. These include biographical information on such famous contributors as Fermat, Pascal, the Bernoullis, DeMoivre, Bayes, Laplace, Poisson, and Markov. Of interest to a wide range of readers and useful in many undergraduate programs.

Discrete Probability and Algorithms (The IMA Volumes in Mathematics and its Applications #72)

by David Aldous Laurent Saloff-Coste Joel Spencer J. Michael Steele

Discrete probability theory and the theory of algorithms have become close partners over the last ten years, though the roots of this partnership go back much longer. The papers in this volume address the latest developments in this active field. They are from the IMA Workshops "Probability and Algorithms" and "The Finite Markov Chain Renaissance." They represent the current thinking of many of the world's leading experts in the field. Researchers and graduate students in probability, computer science, combinatorics, and optimization theory will all be interested in this collection of articles. The techniques developed and surveyed in this volume are still undergoing rapid development, and many of the articles of the collection offer an expositionally pleasant entree into a research area of growing importance.

Discrete Probability Models and Methods: Probability on Graphs and Trees, Markov Chains and Random Fields, Entropy and Coding (Probability Theory and Stochastic Modelling #78)

by Pierre Brémaud

The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book.

Discrete Problems in Nature Inspired Algorithms

by Anupam Prof. Shukla Ritu Tiwari

This book includes introduction of several algorithms which are exclusively for graph based problems, namely combinatorial optimization problems, path formation problems, etc. Each chapter includes the introduction of the basic traditional nature inspired algorithm and discussion of the modified version for discrete algorithms including problems pertaining to discussed algorithms.

Discrete Problems in Nature Inspired Algorithms

by Anupam Prof. Shukla Ritu Tiwari

This book includes introduction of several algorithms which are exclusively for graph based problems, namely combinatorial optimization problems, path formation problems, etc. Each chapter includes the introduction of the basic traditional nature inspired algorithm and discussion of the modified version for discrete algorithms including problems pertaining to discussed algorithms.

Discrete q-Distributions

by Charalambos A. Charalambides

A self-contained study of the various applications and developments of discrete distribution theory Written by a well-known researcher in the field, Discrete q-Distributions features an organized presentation of discrete q-distributions based on the stochastic model of a sequence of independent Bernoulli trials. In an effort to keep the book self-contained, the author covers all of the necessary basic q-sequences and q-functions. The book begins with an introduction of the notions of a q-power, a q-factorial, and a q-binomial coefficient and proceeds to discuss the basic q-combinatorics and q-hypergeometric series. Next, the book addresses discrete q-distributions with success probability at a trial varying geometrically, with rate q, either with the number of previous trials or with the number of previous successes. Further, the book examines two interesting stochastic models with success probability at any trial varying geometrically both with the number of trials and the number of successes and presents local and global limit theorems. Discrete q-Distributions also features: Discussions of the definitions and theorems that highlight key concepts and results Several worked examples that illustrate the applications of the presented theory Numerous exercises at varying levels of difficulty that consolidate the concepts and results as well as complement, extend, or generalize the results Detailed hints and answers to all the exercises in an appendix to help less-experienced readers gain a better understanding of the content An up-to-date bibliography that includes the latest trends and advances in the field and provides a collective source for further research An Instructor’s Solutions Manual available on a companion website A unique reference for researchers and practitioners in statistics, mathematics, physics, engineering, and other applied sciences, Discrete q-Distributions is also an appropriate textbook for graduate-level courses in discrete statistical distributions, distribution theory, and combinatorics.

Discrete q-Distributions

by Charalambos A. Charalambides

A self-contained study of the various applications and developments of discrete distribution theory Written by a well-known researcher in the field, Discrete q-Distributions features an organized presentation of discrete q-distributions based on the stochastic model of a sequence of independent Bernoulli trials. In an effort to keep the book self-contained, the author covers all of the necessary basic q-sequences and q-functions. The book begins with an introduction of the notions of a q-power, a q-factorial, and a q-binomial coefficient and proceeds to discuss the basic q-combinatorics and q-hypergeometric series. Next, the book addresses discrete q-distributions with success probability at a trial varying geometrically, with rate q, either with the number of previous trials or with the number of previous successes. Further, the book examines two interesting stochastic models with success probability at any trial varying geometrically both with the number of trials and the number of successes and presents local and global limit theorems. Discrete q-Distributions also features: Discussions of the definitions and theorems that highlight key concepts and results Several worked examples that illustrate the applications of the presented theory Numerous exercises at varying levels of difficulty that consolidate the concepts and results as well as complement, extend, or generalize the results Detailed hints and answers to all the exercises in an appendix to help less-experienced readers gain a better understanding of the content An up-to-date bibliography that includes the latest trends and advances in the field and provides a collective source for further research An Instructor’s Solutions Manual available on a companion website A unique reference for researchers and practitioners in statistics, mathematics, physics, engineering, and other applied sciences, Discrete q-Distributions is also an appropriate textbook for graduate-level courses in discrete statistical distributions, distribution theory, and combinatorics.

Discrete Series of GLn Over a Finite Field. (AM-81), Volume 81 (PDF)

by George Lusztig

In this book Professor Lusztig solves an interesting problem by entirely new methods: specifically, the use of cohomology of buildings and related complexes.The book gives an explicit construction of one distinguished member, D(V), of the discrete series of GLn (Fq), where V is the n-dimensional F-vector space on which GLn(Fq) acts. This is a p-adic representation; more precisely D(V) is a free module of rank (q--1) (q2—1)...(qn-1—1) over the ring of Witt vectors WF of F. In Chapter 1 the author studies the homology of partially ordered sets, and proves some vanishing theorems for the homology of some partially ordered sets associated to geometric structures. Chapter 2 is a study of the representation △ of the affine group over a finite field. In Chapter 3 D(V) is defined, and its restriction to parabolic subgroups is determined. In Chapter 4 the author computes the character of D(V), and shows how to obtain other members of the discrete series by applying Galois automorphisms to D(V). Applications are in Chapter 5. As one of the main applications of his study the author gives a precise analysis of a Brauer lifting of the standard representation of GLn(Fq).

Discrete Simulation and Animation for Mining Engineers

by John Sturgul

General Purpose Simulation System (GPSS) is a special computer programming language primarily used to simulate what can be classified as discrete systems. A discrete system is one where, at any given instant in time, a countable number of things can take place. The basic operation of a mine itself can be considered such a system. Discrete Simulatio

Refine Search

Showing 13,726 through 13,750 of 55,640 results