Browse Results

Showing 28,526 through 28,550 of 55,530 results

Lectures on Optimal Transport (UNITEXT #130)

by Luigi Ambrosio Elia Brué Daniele Semola

This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations.

Lectures on Ordinary Differential Equations (Dover Books on Mathematics)

by Witold Hurewicz

Hailed by The American Mathematical Monthly as "a rigorous and lively introduction," this text explores a topic of perennial interest in mathematics. The author, a distinguished mathematician and formulator of the Hurewicz theorem, presents a clear and lucid treatment that emphasizes geometric methods. Topics include first-order scalar and vector equations, basic properties of linear vector equations, and two-dimensional nonlinear autonomous systems. Suitable for senior mathematics students, the text begins with an examination of differential equations of the first order in one unknown function. Subsequent chapters address systems of differential equations, linear systems of differential equations, singularities of an autonomous system, and solutions of an autonomous system in the large.

Lectures on p-adic Differential Equations (Grundlehren der mathematischen Wissenschaften #253)

by Bernard Dwork

The present work treats p-adic properties of solutions of the hypergeometric differential equation d2 d ~ ( x(l - x) dx + (c(l - x) + (c - 1 - a - b)x) dx - ab)y = 0, 2 with a, b, c in 4) n Zp, by constructing the associated Frobenius structure. For this construction we draw upon the methods of Alan Adolphson [1] in his 1976 work on Hecke polynomials. We are also indebted to him for the account (appearing as an appendix) of the relation between this differential equation and certain L-functions. We are indebted to G. Washnitzer for the method used in the construction of our dual theory (Chapter 2). These notes represent an expanded form of lectures given at the U. L. P. in Strasbourg during the fall term of 1980. We take this opportunity to thank Professor R. Girard and IRMA for their hospitality. Our subject-p-adic analysis-was founded by Marc Krasner. We take pleasure in dedicating this work to him. Contents 1 Introduction . . . . . . . . . . 1. The Space L (Algebraic Theory) 8 2. Dual Theory (Algebraic) 14 3. Transcendental Theory . . . . 33 4. Analytic Dual Theory. . . . . 48 5. Basic Properties of", Operator. 73 6. Calculation Modulo p of the Matrix of ~ f,h 92 7. Hasse Invariants . . . . . . 108 8. The a --+ a' Map . . . . . . . . . . . . 110 9. Normalized Solution Matrix. . . . . .. 113 10. Nilpotent Second-Order Linear Differential Equations with Fuchsian Singularities. . . . . . . . . . . . . 137 11. Second-Order Linear Differential Equations Modulo Powers ofp ..... .

Lectures on P-Adic L-Functions. (AM-74), Volume 74

by Kinkichi Iwasawa

An especially timely work, the book is an introduction to the theory of p-adic L-functions originated by Kubota and Leopoldt in 1964 as p-adic analogues of the classical L-functions of Dirichlet. Professor Iwasawa reviews the classical results on Dirichlet's L-functions and sketches a proof for some of them. Next he defines generalized Bernoulli numbers and discusses some of their fundamental properties. Continuing, he defines p-adic L-functions, proves their existence and uniqueness, and treats p-adic logarithms and p-adic regulators. He proves a formula of Leopoldt for the values of p-adic L-functions at s=1. The formula was announced in 1964, but a proof has never before been published. Finally, he discusses some applications, especially the strong relationship with cyclotomic fields.

Lectures on Partial Differential Equations (Universitext)

by Vladimir I. Arnold

Choice Outstanding Title! (January 2006) This richly illustrated text covers the Cauchy and Neumann problems for the classical linear equations of mathematical physics. A large number of problems are sprinkled throughout the book, and a full set of problems from examinations given in Moscow are included at the end. Some of these problems are quite challenging! What makes the book unique is Arnold's particular talent at holding a topic up for examination from a new and fresh perspective. He likes to blow away the fog of generality that obscures so much mathematical writing and reveal the essentially simple intuitive ideas underlying the subject. No other mathematical writer does this quite so well as Arnold.

Lectures on Partial Differential Equations

by I. G. Petrovsky

The field of partial differential equations is an extremely important component of modern mathematics. It has great intrinsic beauty and virtually unlimited applications. This book, written for graduate-level students, grew out of a series of lectures the late Professor Petrovsky gave at Moscow State University. The first chapter uses physical problems to introduce the subjects and explains its division into hyperbolic, elliptic, and parabolic partial differential equations. Each of these three classes of equations is dealt with in one of the remaining three chapters of the book in a manner that is at once rigorous, transparent, and highly readable.Petrovsky was a leading figure in Russian mathematics responsible for many advances in the field of partial differential equations. In these masterly lectures, his commentary and discussion of various aspects of the problems under consideration will prove valuable in deepening students’ understanding and appreciation of these problems.

Lectures on Polytopes (Graduate Texts in Mathematics #152)

by Günter M. Ziegler

Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.

Lectures on Probability Theory: Ecole d'Ete de Probabilites de Saint-Flour XXII - 1992 (Lecture Notes in Mathematics #1581)

by Dominique Bakry Richard D. Gill Stanislav A. Molchanov

This book contains work-outs of the notes of three 15-hour courses of lectures which constitute surveys on the concerned topics given at the St. Flour Probability Summer School in July 1992. The first course, by D. Bakry, is concerned with hypercontractivity properties and their use in semi-group theory, namely Sobolev and Log Sobolev inequa- lities, with estimations on the density of the semi-groups. The second one, by R.D. Gill, is about statistics on survi- val analysis; it includes product-integral theory, Kaplan- Meier estimators, and a look at cryptography and generation of randomness. The third one, by S.A. Molchanov, covers three aspects of random media: homogenization theory, loca- lization properties and intermittency. Each of these chap- ters provides an introduction to and survey of its subject.

Lectures on Probability Theory: Ecole d'Ete de Probabilites de Saint-Flour XXIII - 1993 (Lecture Notes in Mathematics #1608)

by Philippe Biane Richard Durrett

This book contains two of the three lectures given at the Saint-Flour Summer School of Probability Theory during the period August 18 to September 4, 1993.

Lectures on Probability Theory and Statistics: Ecole d'Eté de Probabilités de Saint-Flour XXX - 2000 (Lecture Notes in Mathematics #1816)

by Sergio Albeverio Walter Schachermayer

In World Mathematical Year 2000 the traditional St. Flour Summer School was hosted jointly with the European Mathematical Society. Sergio Albeverio reviews the theory of Dirichlet forms, and gives applications including partial differential equations, stochastic dynamics of quantum systems, quantum fields and the geometry of loop spaces. The second text, by Walter Schachermayer, is an introduction to the basic concepts of mathematical finance, including the Bachelier and Black-Scholes models. The fundamental theorem of asset pricing is discussed in detail. Finally Michel Talagrand, gives an overview of the mean field models for spin glasses. This text is a major contribution towards the proof of certain results from physics, and includes a discussion of the Sherrington-Kirkpatrick and the p-spin interaction models.

Lectures on Probability Theory and Statistics: Ecole d'Ete de Probabilites de Saint-Flour XXV - 1995 (Lecture Notes in Mathematics #1690)

by Martin T. Barlow David Nualart

This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during the period 10th - 26th July, 1995. These lectures are at a postgraduate research level. They are works of reference in their domain.

Lectures on Probability Theory and Statistics: Ecole d'Eté de Probabilités de Saint-Flour XXIX - 1999 (Lecture Notes in Mathematics #1781)

by Erwin Bolthausen Edwin Perkins Aad, van Vaart

This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during the period 8th-24th July, 1999. We thank the authors for all the hard work they accomplished. Their lectures are a work of reference in their domain. The School brought together 85 participants, 31 of whom gave a lecture concerning their research work. At the end of this volume you will find the list of participants and their papers. Finally, to facilitate research concerning previous schools we give here the number of the volume of "Lecture Notes" where they can be found: Lecture Notes in Mathematics 1975: n ° 539- 1971: n ° 307- 1973: n ° 390- 1974: n ° 480- 1979: n ° 876- 1976: n ° 598- 1977: n ° 678- 1978: n ° 774- 1980: n ° 929- 1981: n ° 976- 1982: n ° 1097- 1983: n ° 1117- 1988: n ° 1427- 1984: n ° 1180- 1985-1986 et 1987: n ° 1362- 1989: n ° 1464- 1990: n ° 1527- 1991: n ° 1541- 1992: n ° 1581- 1993: n ° 1608- 1994: n ° 1648- 1995: n ° 1690- 1996: n ° 1665- 1997: n ° 1717- 1998: n ° 1738- Lecture Notes in Statistics 1971: n ° 307- Table of Contents Part I Erwin Bolthausen: Large Deviations and Interacting Random Walks 1 On the construction of the three-dimensional polymer measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Self-attracting random walks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 One-dimensional pinning-depinning transitions. . . . . . . . . . . 105 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lectures on Probability Theory and Statistics: Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 (Lecture Notes in Mathematics #1869)

by Amir Dembo Tadahisa Funaki

This volume contains two of the three lectures that were given at the 33rd Probability Summer School in Saint-Flour (July 6-23, 2003). Amir Dembo’s course is devoted to recent studies of the fractal nature of random sets, focusing on some fine properties of the sample path of random walk and Brownian motion. In particular, the cover time for Markov chains, the dimension of discrete limsup random fractals, the multi-scale truncated second moment and the Ciesielski-Taylor identities are explored. Tadahisa Funaki’s course reviews recent developments of the mathematical theory on stochastic interface models, mostly on the so-called \nabla \varphi interface model. The results are formulated as classical limit theorems in probability theory, and the text serves with good applications of basic probability techniques.

Lectures on Probability Theory and Statistics: Ecole d'Ete de Probabilites de Saint-Flour XXVIII - 1998 (Lecture Notes in Mathematics #1738)

by M. Emery A. Nemirovski D. Voiculescu

This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during 17th Aug. - 3rd Sept. 1998. The contents of the three courses are the following:- Continuous martingales on differential manifolds.- Topics in non-parametric statistics.- Free probability theory.The reader is expected to have a graduate level in probability theory and statistics. This book is of interest to PhD students in probability and statistics or operators theory as well as for researchers in all these fields. The series of lecture notes from the Saint-Flour Probability Summer School can be considered as an encyclopedia of probability theory and related fields.

Lectures on Probability Theory and Statistics: Ecole d'Eté de Probabilités de Saint-Flour XXXI - 2001 (Lecture Notes in Mathematics #1837)

by Simon Tavaré Ofer Zeitouni

This volume contains lectures given at the 31st Probability Summer School in Saint-Flour (July 8-25, 2001). Simon Tavaré’s lectures serve as an introduction to the coalescent, and to inference for ancestral processes in population genetics. The stochastic computation methods described include rejection methods, importance sampling, Markov chain Monte Carlo, and approximate Bayesian methods. Ofer Zeitouni’s course on "Random Walks in Random Environment" presents systematically the tools that have been introduced to study the model. A fairly complete description of available results in dimension 1 is given. For higher dimension, the basic techniques and a discussion of some of the available results are provided. The contribution also includes an updated annotated bibliography and suggestions for further reading. Olivier Catoni's course appears separately.

Lectures on Probability Theory and Statistics: Ecole d'Eté de Probabilités de Saint-Flour XXXII - 2002 (Lecture Notes in Mathematics #1840)

by Boris Tsirelson Wendelin Werner

This is yet another indispensable volume for all probabilists and collectors of the Saint-Flour series, and is also of great interest for mathematical physicists. It contains two of the three lecture courses given at the 32nd Probability Summer School in Saint-Flour (July 7-24, 2002). Tsirelson's lectures introduce the notion of nonclassical noise produced by very nonlinear functions of many independent random variables, for instance singular stochastic flows or oriented percolation. Werner's contribution gives a survey of results on conformal invariance, scaling limits and properties of some two-dimensional random curves. It provides a definition and properties of the Schramm-Loewner evolutions, computations (probabilities, critical exponents), the relation with critical exponents of planar Brownian motions, planar self-avoiding walks, critical percolation, loop-erased random walks and uniform spanning trees.

Lectures on Proof Verification and Approximation Algorithms (Lecture Notes in Computer Science #1367)

by Ernst W. Mayr Hans Jürgen Prömel Angelika Steger

During the last few years, we have seen quite spectacular progress in the area of approximation algorithms: for several fundamental optimization problems we now actually know matching upper and lower bounds for their approximability. This textbook-like tutorial is a coherent and essentially self-contained presentation of the enormous recent progress facilitated by the interplay between the theory of probabilistically checkable proofs and aproximation algorithms. The basic concepts, methods, and results are presented in a unified way to provide a smooth introduction for newcomers. These lectures are particularly useful for advanced courses or reading groups on the topic.

Lectures on Pseudo-Differential Operators: Regularity Theorems and Applications to Non-Elliptic Problems. (MN-24)

by Alexander Nagel Elias M. Stein

The theory of pseudo-differential operators (which originated as singular integral operators) was largely influenced by its application to function theory in one complex variable and regularity properties of solutions of elliptic partial differential equations. Given here is an exposition of some new classes of pseudo-differential operators relevant to several complex variables and certain non-elliptic problems.Originally published in 1979.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Lectures on Quantum Field Theory and Functional Integration

by Zbigniew Haba

This book offers a concise introduction to quantum field theory and functional integration for students of physics and mathematics. Its aim is to explain mathematical methods developed in the 1970s and 1980s and apply these methods to standard models of quantum field theory. In contrast to other textbooks on quantum field theory, this book treats functional integration as a rigorous mathematical tool. More emphasis is placed on the mathematical framework as opposed to applications to particle physics. It is stressed that the functional integral approach, unlike the operator framework, is suitable for numerical simulations. The book arose from the author's teaching in Wroclaw and preserves the form of his lectures. So some topics are treated as an introduction to the problem rather than a complete solution with all details. Some of the mathematical methods described in the book resulted from the author's own research.

Lectures on Quantum Statistics: With Applications to Dilute Gases and Plasmas (Lecture Notes in Physics #953)

by Werner Ebeling Thorsten Pöschel

Most of the matter in our universe is in a gaseous or plasma state. Yet, most textbooks on quantum statistics focus on examples from and applications in condensed matter systems, due to the prevalence of solids and liquids in our day-to-day lives. In an attempt to remedy that oversight, this book consciously focuses on teaching the subject matter in the context of (dilute) gases and plasmas, while aiming primarily at graduate students and young researchers in the field of quantum gases and plasmas for some of the more advanced topics. The majority of the material is based on a two-semester course held jointly by the authors over many years, and has benefited from extensive feedback provided by countless students and co-workers. The book also includes many historical remarks on the roots of quantum statistics: firstly because students appreciate and are strongly motivated by looking back at the history of a given field of research, and secondly because the spirit permeating this book has been deeply influenced by meetings and discussions with several pioneers of quantum statistics over the past few decades.

Refine Search

Showing 28,526 through 28,550 of 55,530 results