Browse Results

Showing 28,976 through 29,000 of 54,672 results

The Local Langlands Conjecture for GL (Grundlehren der mathematischen Wissenschaften #335)

by Colin J. Bushnell Guy Henniart

The Local Langlands Conjecture for GL(2) contributes an unprecedented text to the so-called Langlands theory. It is an ambitious research program of already 40 years and gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields.

Local Limit Theorems for Inhomogeneous Markov Chains (Lecture Notes in Mathematics #2331)

by Dmitry Dolgopyat Omri M. Sarig

This book extends the local central limit theorem to Markov chains whose state spaces and transition probabilities are allowed to change in time. Such chains are used to model Markovian systems depending on external time-dependent parameters. The book develops a new general theory of local limit theorems for additive functionals of Markov chains, in the regimes of local, moderate, and large deviations, and provides nearly optimal conditions for the classical expansions, as well as asymptotic corrections when these conditions fail. Applications include local limit theorems for independent but not identically distributed random variables, Markov chains in random environments, and time-dependent perturbations of homogeneous Markov chains.The inclusion of appendices with background material, numerous examples, and an account of the historical background of the subject make this self-contained book accessible to graduate students. It will also be useful for researchers in probability and ergodic theory who are interested in asymptotic behaviors, Markov chains in random environments, random dynamical systems and non-stationary systems.

Local Lyapunov Exponents: Sublimiting Growth Rates of Linear Random Differential Equations (Lecture Notes in Mathematics #1963)

by Wolfgang Siegert

Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-intensity-dependent time is trapped near one of its so-called metastable states. The local Lyapunov exponent is then introduced as the exponential growth rate of the linear system on this time scale. Unlike classical Lyapunov exponents, which involve a limit as time increases to infinity in a fixed system, here the system itself changes as the noise intensity converges, too.

Local Minimization, Variational Evolution and Γ-Convergence (Lecture Notes in Mathematics #2094)

by Andrea Braides

This book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed.

Local Moduli and Singularities (Lecture Notes in Mathematics #1310)

by Olav Arnfinn Laudal Gerhard Pfister

This research monograph sets out to study the notion of a local moduli suite of algebraic objects like e.g. schemes, singularities or Lie algebras and provides a framework for this. The basic idea is to work with the action of the kernel of the Kodaira-Spencer map, on the base space of a versal family. The main results are the existence, in a general context, of a local moduli suite in the category of algebraic spaces, and the proof that, generically, this moduli suite is the quotient of a canonical filtration of the base space of the versal family by the action of the Kodaira-Spencer kernel. Applied to the special case of quasihomogenous hypersurfaces, these ideas provide the framework for the proof of the existence of a coarse moduli scheme for plane curve singularities with fixed semigroup and minimal Tjurina number . An example shows that for arbitrary the corresponding moduli space is not, in general, a scheme. The book addresses mathematicians working on problems of moduli, in algebraic or in complex analytic geometry. It assumes a working knowledge of deformation theory.

Local Multipliers of C*-Algebras (Springer Monographs in Mathematics)

by Pere Ara Martin Mathieu

Many problems in operator theory lead to the consideration ofoperator equa­ tions, either directly or via some reformulation. More often than not, how­ ever, the underlying space is too 'small' to contain solutions of these equa­ tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition­ ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A).

Local Newforms for GSp (Lecture Notes in Mathematics #1918)

by Brooks Roberts Ralf Schmidt

Local Newforms for GSp(4) describes a theory of new- and oldforms for representations of GSp(4) over a non-archimedean local field. This theory considers vectors fixed by the paramodular groups and singles out certain vectors that encode canonical information, such as L-factors and epsilon-factors, through their Hecke and Atkin-Lehner eigenvalues. An appendix includes extensive tables about the results and the representations theory of GSp(4).

Local Pattern Detection: International Seminar Dagstuhl Castle, Germany, April 12-16, 2004, Revised Selected Papers (Lecture Notes in Computer Science #3539)

by Katharina Morik Jean-Francois Boulicaut Arno Siebes

Introduction The dramatic increase in available computer storage capacity over the last 10 years has led to the creation of very large databases of scienti?c and commercial information. The need to analyze these masses of data has led to the evolution of the new ?eld knowledge discovery in databases (KDD) at the intersection of machine learning, statistics and database technology. Being interdisciplinary by nature, the ?eld o?ers the opportunity to combine the expertise of di?erent ?elds intoacommonobjective.Moreover,withineach?elddiversemethodshave been developed and justi?ed with respect to di?erent quality criteria. We have toinvestigatehowthesemethods cancontributeto solvingthe problemofKDD. Traditionally, KDD was seeking to ?nd global models for the data that - plain most of the instances of the database and describe the general structure of the data. Examples are statistical time series models, cluster models, logic programs with high coverageor classi?cation models like decision trees or linear decision functions. In practice, though, the use of these models often is very l- ited, because global models tend to ?nd only the obvious patterns in the data, 1 which domain experts already are aware of . What is really of interest to the users are the local patterns that deviate from the already-known background knowledge. David Hand, who organized a workshop in 2002, proposed the new ?eld of local patterns.

Local Polynomial Modelling and Its Applications: Monographs on Statistics and Applied Probability 66 (ISSN)

by Jianqing Fan

Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.

Local Polynomial Modelling and Its Applications: Monographs on Statistics and Applied Probability 66 (ISSN)

by Jianqing Fan

Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.

Local Quantum Measurement and Relativity (Fundamental Theories of Physics #201)

by Christian Beck

This book treats various aspects of the quantum theory of measurement, partially in a relativistic framework. Measurement(-like) processes in quantum theory are identified and analysed; and the quantum operator formalism is derived in full generality without postulating operators as observables. Consistency conditions are derived, expressing the requirement of Lorentz-frame independence of outcomes of spacelike separated measurements and implying the impossibility of using quantum nonlocality to send signals faster than light. Local commutativity is scrutinized. The localization problem of relativistic quantum theory is studied, including comprehensive derivation of the theorems of Hegerfeld, Malament and Reeh-Schlieder. Finally, the quantum formalism is derived from the dynamics of particles with definite positions in Bohmian mechanics.

Local Quantum Physics: Fields, Particles, Algebras (Theoretical and Mathematical Physics)

by Rudolf Haag

The new edition provided the opportunity of adding a new chapter entitled "Principles and Lessons of Quantum Physics". It was a tempting challenge to try to sharpen the points at issue in the long lasting debate on the Copenhagen Spirit, to assess the significance of various arguments from our present vantage point, seventy years after the advent of quantum theory, where, after ali, some problems appear in a different light. It includes a section on the assumptions leading to the specific mathematical formalism of quantum theory and a section entitled "The evolutionary picture" describing my personal conclusions. Alto­ gether the discussion suggests that the conventional language is too narrow and that neither the mathematical nor the conceptual structure are built for eter­ nity. Future theories will demand radical changes though not in the direction of a return to determinism. Essential lessons taught by Bohr will persist. This chapter is essentially self-contained. Some new material has been added in the last chapter. It concerns the char­ acterization of specific theories within the general frame and recent progress in quantum field theory on curved space-time manifolds. A few pages on renor­ malization have been added in Chapter II and some effort has been invested in the search for mistakes and unclear passages in the first edition. The central objective of the book, expressed in the title "Local Quantum Physics", is the synthesis between special relativity and quantum theory to­ gether with a few other principles of general nature.

Local Regression and Likelihood (Statistics and Computing)

by Clive Loader

Separation of signal from noise is the most fundamental problem in data analysis, arising in such fields as: signal processing, econometrics, actuarial science, and geostatistics. This book introduces the local regression method in univariate and multivariate settings, with extensions to local likelihood and density estimation. Practical information is also included on how to implement these methods in the programs S-PLUS and LOCFIT.

Local Search in Combinatorial Optimization

by Emile Aarts Jan Karel Lenstra

In the past three decades, local search has grown from a simple heuristic idea into a mature field of research in combinatorial optimization that is attracting ever-increasing attention. Local search is still the method of choice for NP-hard problems as it provides a robust approach for obtaining high-quality solutions to problems of a realistic size in reasonable time. Local Search in Combinatorial Optimization covers local search and its variants from both a theoretical and practical point of view, each topic discussed by a leading authority. This book is an important reference and invaluable source of inspiration for students and researchers in discrete mathematics, computer science, operations research, industrial engineering, and management science. In addition to the editors, the contributors are Mihalis Yannakakis, Craig A. Tovey, Jan H. M. Korst, Peter J. M. van Laarhoven, Alain Hertz, Eric Taillard, Dominique de Werra, Heinz Mühlenbein, Carsten Peterson, Bo Söderberg, David S. Johnson, Lyle A. McGeoch, Michel Gendreau, Gilbert Laporte, Jean-Yves Potvin, Gerard A. P. Kindervater, Martin W. P. Savelsbergh, Edward J. Anderson, Celia A. Glass, Chris N. Potts, C. L. Liu, Peichen Pan, Iiro Honkala, and Patric R. J. Östergård.

Local Search in Combinatorial Optimization (PDF)

by Emile Aarts Jan Karel Lenstra

In the past three decades, local search has grown from a simple heuristic idea into a mature field of research in combinatorial optimization that is attracting ever-increasing attention. Local search is still the method of choice for NP-hard problems as it provides a robust approach for obtaining high-quality solutions to problems of a realistic size in reasonable time. Local Search in Combinatorial Optimization covers local search and its variants from both a theoretical and practical point of view, each topic discussed by a leading authority. This book is an important reference and invaluable source of inspiration for students and researchers in discrete mathematics, computer science, operations research, industrial engineering, and management science. In addition to the editors, the contributors are Mihalis Yannakakis, Craig A. Tovey, Jan H. M. Korst, Peter J. M. van Laarhoven, Alain Hertz, Eric Taillard, Dominique de Werra, Heinz Mühlenbein, Carsten Peterson, Bo Söderberg, David S. Johnson, Lyle A. McGeoch, Michel Gendreau, Gilbert Laporte, Jean-Yves Potvin, Gerard A. P. Kindervater, Martin W. P. Savelsbergh, Edward J. Anderson, Celia A. Glass, Chris N. Potts, C. L. Liu, Peichen Pan, Iiro Honkala, and Patric R. J. Östergård.

Local Stability and Ultimate Boundedness in the Control of Robot Manipulators (Lecture Notes in Electrical Engineering #798)

by Marco A. Arteaga Alejandro Gutiérrez-Giles Javier Pliego-Jiménez

This book offers a unique compendium of the authors´ own research on the use of theoretical stability analysis, showing how to take advantage of local stability design and ultimate boundedness for practical robot control. It addresses researchers and postgraduate students dealing with control theory, particularly with nonlinear systems. Thanks to the numerous worked examples, it could also be used as a textbook in postgraduate courses.

The Local Structure of Algebraic K-Theory (Algebra and Applications #18)

by Bjørn Ian Dundas Thomas G. Goodwillie Randy McCarthy

Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.

Local Systems in Algebraic-Arithmetic Geometry (Lecture Notes in Mathematics #2337)

by Hélène Esnault

The topological fundamental group of a smooth complex algebraic variety is poorly understood. One way to approach it is to consider its complex linear representations modulo conjugation, that is, its complex local systems. A fundamental problem is then to single out the complex points of such moduli spaces which correspond to geometric systems, and more generally to identify geometric subloci of the moduli space of local systems with special arithmetic properties. Deep conjectures have been made in relation to these problems. This book studies some consequences of these conjectures, notably density, integrality and crystallinity properties of some special loci.This monograph provides a unique compelling and concise overview of an active area of research and is useful to students looking to get into this area. It is of interest to a wide range of researchers and is a useful reference for newcomers and experts alike.

Local Times and Excursion Theory for Brownian Motion: A Tale of Wiener and Itô Measures (Lecture Notes in Mathematics #2088)

by Ju-Yi Yen Marc Yor

This monograph discusses the existence and regularity properties of local times associated to a continuous semimartingale, as well as excursion theory for Brownian paths. Realizations of Brownian excursion processes may be translated in terms of the realizations of a Wiener process under certain conditions. With this aim in mind, the monograph presents applications to topics which are not usually treated with the same tools, e.g.: arc sine law, laws of functionals of Brownian motion, and the Feynman-Kac formula.

Local Variance Estimation for Uncensored and Censored Observations

by Paola Gloria Ferrario

Paola Gloria Ferrario develops and investigates several methods of nonparametric local variance estimation. The first two methods use regression estimations (plug-in), achieving least squares estimates as well as local averaging estimates (partitioning or kernel type). Furthermore, the author uses a partitioning method for the estimation of the local variance based on first and second nearest neighbors (instead of regression estimation). Approaching specific problems of application fields, all the results are extended and generalised to the case where only censored observations are available. Further, simulations have been executed comparing the performance of two different estimators (R-Code available!). As a possible application of the given theory the author proposes a survival analysis of patients who are treated for a specific illness.

The Localization Problem in Index Theory of Elliptic Operators (Pseudo-Differential Operators #10)

by Vladimir Nazaikinskii Bert-Wolfgang Schulze Boris Sternin

The book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of new important problems in index theory. So far, the localization principle has been only scarcely covered in journal papers and not covered at all in monographs. The suggested book is intended to fill the gap. So far, it is the first and only monograph dealing with the topic. Both the general localization principle and its applications to specific problems, existing and new, are covered. The book will be of interest to working mathematicians as well as graduate and postgraduate university students specializing in differential equations and related topics.​

Refine Search

Showing 28,976 through 29,000 of 54,672 results