Browse Results

Showing 4,701 through 4,725 of 55,530 results

Asymptotic Multiple Scale Method in Time Domain: Multi-Degree-of-Freedom Stationary and Nonstationary Dynamics

by Jan Awrejcewicz Roman Starosta Grażyna Sypniewska-Kamińska

This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.

Asymptotic Multiple Scale Method in Time Domain: Multi-Degree-of-Freedom Stationary and Nonstationary Dynamics

by Jan Awrejcewicz Roman Starosta Grażyna Sypniewska-Kamińska

This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.

Asymptotic Optimal Inference for Non-ergodic Models (Lecture Notes in Statistics #17)

by I. V. Basawa D. J. Scott

This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape.

Asymptotic Perturbation Methods: For Nonlinear Differential Equations in Physics

by Attilio Maccari

Asymptotic Perturbation Methods Cohesive overview of powerful mathematical methods to solve differential equations in physics Asymptotic Perturbation Methods for Nonlinear Differential Equations in Physics addresses nonlinearity in various fields of physics from the vantage point of its mathematical description in the form of nonlinear partial differential equations and presents a unified view on nonlinear systems in physics by providing a common framework to obtain approximate solutions to the respective nonlinear partial differential equations based on the asymptotic perturbation method. Aside from its complete coverage of a complicated topic, a noteworthy feature of the book is the emphasis on applications. There are several examples included throughout the text, and, crucially, the scientific background is explained at an elementary level and closely integrated with the mathematical theory to enable seamless reader comprehension. To fully understand the concepts within this book, the prerequisites are multivariable calculus and introductory physics. Written by a highly qualified author with significant accomplishments in the field, Asymptotic Perturbation Methods for Nonlinear Differential Equations in Physics covers sample topics such as: Application of the various flavors of the asymptotic perturbation method, such as the Maccari method to the governing equations of nonlinear system Nonlinear oscillators, limit cycles, and their bifurcations, iterated nonlinear maps, continuous systems, and nonlinear partial differential equations (NPDEs) Nonlinear systems, such as the van der Pol oscillator, with advanced coverage of plasma physics, quantum mechanics, elementary particle physics, cosmology, and chaotic systems Infinite-period bifurcation in the nonlinear Schrodinger equation and fractal and chaotic solutions in NPDEs Asymptotic Perturbation Methods for Nonlinear Differential Equations in Physics is ideal for an introductory course at the senior or first year graduate level. It is also a highly valuable reference for any professional scientist who does not possess deep knowledge about nonlinear physics.

Asymptotic Perturbation Methods: For Nonlinear Differential Equations in Physics

by Attilio Maccari

Asymptotic Perturbation Methods Cohesive overview of powerful mathematical methods to solve differential equations in physics Asymptotic Perturbation Methods for Nonlinear Differential Equations in Physics addresses nonlinearity in various fields of physics from the vantage point of its mathematical description in the form of nonlinear partial differential equations and presents a unified view on nonlinear systems in physics by providing a common framework to obtain approximate solutions to the respective nonlinear partial differential equations based on the asymptotic perturbation method. Aside from its complete coverage of a complicated topic, a noteworthy feature of the book is the emphasis on applications. There are several examples included throughout the text, and, crucially, the scientific background is explained at an elementary level and closely integrated with the mathematical theory to enable seamless reader comprehension. To fully understand the concepts within this book, the prerequisites are multivariable calculus and introductory physics. Written by a highly qualified author with significant accomplishments in the field, Asymptotic Perturbation Methods for Nonlinear Differential Equations in Physics covers sample topics such as: Application of the various flavors of the asymptotic perturbation method, such as the Maccari method to the governing equations of nonlinear system Nonlinear oscillators, limit cycles, and their bifurcations, iterated nonlinear maps, continuous systems, and nonlinear partial differential equations (NPDEs) Nonlinear systems, such as the van der Pol oscillator, with advanced coverage of plasma physics, quantum mechanics, elementary particle physics, cosmology, and chaotic systems Infinite-period bifurcation in the nonlinear Schrodinger equation and fractal and chaotic solutions in NPDEs Asymptotic Perturbation Methods for Nonlinear Differential Equations in Physics is ideal for an introductory course at the senior or first year graduate level. It is also a highly valuable reference for any professional scientist who does not possess deep knowledge about nonlinear physics.

Asymptotic Prime Divisors (Lecture Notes in Mathematics #1023)

by S. McAdam

a

Asymptotic Properties of Permanental Sequences: Related to Birth and Death Processes and Autoregressive Gaussian Sequences (SpringerBriefs in Probability and Mathematical Statistics)

by Michael B. Marcus Jay Rosen

This SpringerBriefs employs a novel approach to obtain the precise asymptotic behavior at infinity of a large class of permanental sequences related to birth and death processes and autoregressive Gaussian sequences using techniques from the theory of Gaussian processes and Markov chains. The authors study alpha-permanental processes that are positive infinitely divisible processes determined by the potential density of a transient Markov process. When the Markov process is symmetric, a 1/2-permanental process is the square of a Gaussian process. Permanental processes are related by the Dynkin isomorphism theorem to the total accumulated local time of the Markov process when the potential density is symmetric, and by a generalization of the Dynkin theorem by Eisenbaum and Kaspi without requiring symmetry. Permanental processes are also related to chi square processes and loop soups. The book appeals to researchers and advanced graduate students interested in stochastic processes, infinitely divisible processes and Markov chains.

Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations (Mathematics and its Applications #89)

by Ivan Kiguradze T.A. Chanturia

This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations.

Asymptotic Representation of Relaxation Oscillations in Lasers (Understanding Complex Systems)

by Elena V. Grigorieva Sergey A. Kaschenko

In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations (Springer Monographs in Mathematics)

by Valery V. Kozlov Stanislav D. Furta

The book is dedicated to the construction of particular solutions of systems of ordinary differential equations in the form of series that are analogous to those used in Lyapunov’s first method. A prominent place is given to asymptotic solutions that tend to an equilibrium position, especially in the strongly nonlinear case, where the existence of such solutions can’t be inferred on the basis of the first approximation alone. The book is illustrated with a large number of concrete examples of systems in which the presence of a particular solution of a certain class is related to special properties of the system’s dynamic behavior. It is a book for students and specialists who work with dynamical systems in the fields of mechanics, mathematics, and theoretical physics.

Asymptotic Stability of Steady Compressible Fluids (Lecture Notes in Mathematics #2024)

by Mariarosaria Padula

This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A heat-conducting, viscous polytropic gas.

Asymptotic Statistical Inference: A Basic Course Using R

by Shailaja Deshmukh Madhuri Kulkarni

The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an estimator and its large sample distribution, with suitable normalization, are discussed, the focus being on the consistent and asymptotically normal (CAN) estimators. It is shown that for the probability models belonging to an exponential family and a Cramer family, the maximum likelihood estimators of the indexing parameters are CAN. The book describes some large sample test procedures, in particular, the most frequently used likelihood ratio test procedure. Various applications of the likelihood ratio test procedure are addressed, when the underlying probability model is a multinomial distribution. These include tests for the goodness of fit and tests for contingency tables. The book also discusses a score test and Wald’s test, their relationship with the likelihood ratio test and Karl Pearson’s chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic and Karl Pearson’s chi-square test statistic are identical. Numerous illustrative examples of differing difficulty level are incorporated to clarify the concepts. For better assimilation of the notions, various exercises are included in each chapter. Solutions to almost all the exercises are given in the last chapter, to motivate students towards solving these exercises and to enable digestion of the underlying concepts. The concepts from asymptotic inference are crucial in modern statistics, but are difficult to grasp in view of their abstract nature. To overcome this difficulty, keeping up with the recent trend of using R software for statistical computations, the book uses it extensively, for illustrating the concepts, verifying the properties of estimators and carrying out various test procedures. The last section of the chapters presents R codes to reveal and visually demonstrate the hidden aspects of different concepts and procedures. Augmenting the theory with R software is a novel and a unique feature of the book. The book is designed primarily to serve as a text book for a one semester introductory course in asymptotic statistical inference, in a post-graduate program, such as Statistics, Bio-statistics or Econometrics. It will also provide sufficient background information for studying inference in stochastic processes. The book will cater to the need of a concise but clear and student-friendly book introducing, conceptually and computationally, basics of asymptotic inference.

Asymptotic Statistics: Proceedings of the Fifth Prague Symposium, held from September 4–9, 1993 (Contributions to Statistics)

by Petr Mandl Marie Huskova

In particular up-to-date-information is presented in detection of systematic changes, in series of observation, in robust regression analysis, in numerical empirical processes and in related areas of actuarial sciences.

Asymptotic Statistics in Insurance Risk Theory (SpringerBriefs in Statistics)

by Yasutaka Shimizu

This book begins with the fundamental large sample theory, estimating ruin probability, and ends by dealing with the latest issues of estimating the Gerber–Shiu function. This book is the first to introduce the recent development of statistical methodologies in risk theory (ruin theory) as well as their mathematical validities. Asymptotic theory of parametric and nonparametric inference for the ruin-related quantities is discussed under the setting of not only classical compound Poisson risk processes (Cramér–Lundberg model) but also more general Lévy insurance risk processes. The recent development of risk theory can deal with many kinds of ruin-related quantities: the probability of ruin as well as Gerber–Shiu’s discounted penalty function, both of which are useful in insurance risk management and in financial credit risk analysis. In those areas, the common stochastic models are used in the context of the structural approach of companies’ default. So far, the probabilistic point of view has been the main concern for academic researchers. However, this book emphasizes the statistical point of view because identifying the risk model is always necessary and is crucial in the final step of practical risk management.

Asymptotic Structure of Space-Time

by F. Esposito

The Symposium on Asymptotic Structure of Space-Time (SOASST) was held at the University of Cincinnati, June 14-18, 1976. We had been thinking of organizing a symposium on the properties of "in­ finity" for several years. The subject had reached a stage of maturity and had also formed a basis for important current investi­ gations. It was felt that a symposium, together with a publication of the proceedings, would review, summarize, and consolidate, the more mature aspects of the field and serve as an appropriate intro­ duction to an expanding body of research. We had from the first the enthusiastic support and encouragement of many colleagues; with their cooperation and advice, the Symposium acquired its final form. These proceedings will attest to the value of the Symposium. The Symposium consisted of thirty lectures and had an attendance of approximately one hundred and thirty. The final impetus to our decision to go forward was the Bicen­ tennial Anniversary of the independence of our country. A most appropriate celebration on a University Campus surely is an intel­ lectual Symposium which pays honor to the histories and traditional purposes of a University. The Symposium was supported financially by the University of Cincinnatl Bicentennial Committee, the National Science Foundation, the Gravity Research Foundation, and by Armand Knoblaugh, Professor Emeritus of Physics of the University of Cincinnati.

Asymptotic Theory for Econometricians (Economic Theory, Econometrics, and Mathematical Economics)

by Halbert White

This book is intended to provide a somewhat more comprehensive and unified treatment of large sample theory than has been available previously and to relate the fundamental tools of asymptotic theory directly to many of the estimators of interest to econometricians. In addition, because economic data are generated in a variety of different contexts (time series, cross sections, time series--cross sections), we pay particular attention to the similarities and differences in the techniques appropriate to each of these contexts.

An Asymptotic Theory for Empirical Reliability and Concentration Processes (Lecture Notes in Statistics #33)

by Miklos Csörgö Sandor Csörgö Lajos Horváth

Mik16s Cs6rgO and David M. Mason initiated their collaboration on the topics of this book while attending the CBMS-NSF Regional Confer­ ence at Texas A & M University in 1981. Independently of them, Sandor Cs6rgO and Lajos Horv~th have begun their work on this subject at Szeged University. The idea of writing a monograph together was born when the four of us met in the Conference on Limit Theorems in Probability and Statistics, Veszpr~m 1982. This collaboration resulted in No. 2 of Technical Report Series of the Laboratory for Research in Statistics and Probability of Carleton University and University of Ottawa, 1983. Afterwards David M. Mason has decided to withdraw from this project. The authors wish to thank him for his contributions. In particular, he has called our attention to the reverse martingale property of the empirical process together with the associated Birnbaum-Marshall inequality (cf.,the proofs of Lemmas 2.4 and 3.2) and to the Hardy inequality (cf. the proof of part (iv) of Theorem 4.1). These and several other related remarks helped us push down the 2 moment condition to EX < 00 in all our weak approximation theorems.

Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains (Operator Theory: Advances and Applications #284)

by Dmitrii Korikov Boris Plamenevskii Oleg Sarafanov

This book considers dynamic boundary value problems in domains with singularities of two types. The first type consists of "edges" of various dimensions on the boundary; in particular, polygons, cones, lenses, polyhedra are domains of this type. Singularities of the second type are "singularly perturbed edges" such as smoothed corners and edges and small holes. A domain with singularities of such type depends on a small parameter, whereas the boundary of the limit domain (as the parameter tends to zero) has usual edges, i.e. singularities of the first type. In the transition from the limit domain to the perturbed one, the boundary near a conical point or an edge becomes smooth, isolated singular points become small cavities, and so on. In an "irregular" domain with such singularities, problems of elastodynamics, electrodynamics and some other dynamic problems are discussed. The purpose is to describe the asymptotics of solutions near singularities of the boundary. The presented results and methods have a wide range of applications in mathematical physics and engineering. The book is addressed to specialists in mathematical physics, partial differential equations, and asymptotic methods.

Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I (Operator Theory: Advances and Applications #111)

by Vladimir Maz'ya Serguei Nazarov Boris Plamenevskij

For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors’ work, and has no significant overlap with other books on the theory of elliptic boundary value problems.

Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II: Volume II (Operator Theory: Advances and Applications #112)

by Vladimir Maz'ya Serguei Nazarov Boris Plamenevskij

For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors’ work, and has no significant overlap with other books on the theory of elliptic boundary value problems

Asymptotic Theory of Finite Dimensional Normed Spaces: Isoperimetric Inequalities in Riemannian Manifolds (Lecture Notes in Mathematics #1200)

by Vitali D. Milman Gideon Schechtman

This book deals with the geometrical structure of finite dimensional normed spaces, as the dimension grows to infinity. This is a part of what came to be known as the Local Theory of Banach Spaces (this name was derived from the fact that in its first stages, this theory dealt mainly with relating the structure of infinite dimensional Banach spaces to the structure of their lattice of finite dimensional subspaces). Our purpose in this book is to introduce the reader to some of the results, problems, and mainly methods developed in the Local Theory, in the last few years. This by no means is a complete survey of this wide area. Some of the main topics we do not discuss here are mentioned in the Notes and Remarks section. Several books appeared recently or are going to appear shortly, which cover much of the material not covered in this book. Among these are Pisier's [Pis6] where factorization theorems related to Grothendieck's theorem are extensively discussed, and Tomczak-Jaegermann's [T-Jl] where operator ideals and distances between finite dimensional normed spaces are studied in detail. Another related book is Pietch's [Pie].

Asymptotic Theory of Nonlinear Regression (Mathematics and Its Applications #389)

by A.A. Ivanov

Let us assume that an observation Xi is a random variable (r.v.) with values in 1 1 (1R1 , 8 ) and distribution Pi (1R1 is the real line, and 8 is the cr-algebra of its Borel subsets). Let us also assume that the unknown distribution Pi belongs to a 1 certain parametric family {Pi() , () E e}. We call the triple £i = {1R1 , 8 , Pi(), () E e} a statistical experiment generated by the observation Xi. n We shall say that a statistical experiment £n = {lRn, 8 , P; ,() E e} is the product of the statistical experiments £i, i = 1, ... ,n if PO' = P () X ... X P () (IRn 1 n n is the n-dimensional Euclidean space, and 8 is the cr-algebra of its Borel subsets). In this manner the experiment £n is generated by n independent observations X = (X1, ... ,Xn). In this book we study the statistical experiments £n generated by observations of the form j = 1, ... ,n. (0.1) Xj = g(j, (}) + cj, c c In (0.1) g(j, (}) is a non-random function defined on e , where e is the closure in IRq of the open set e ~ IRq, and C j are independent r. v .-s with common distribution function (dJ.) P not depending on ().

Asymptotic Theory of Statistical Inference for Time Series (Springer Series in Statistics)

by Masanobu Taniguchi Yoshihide Kakizawa

The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Asymptotic Theory of Statistics and Probability (Springer Texts in Statistics)

by Anirban DasGupta

This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.

Asymptotic Theory of Weakly Dependent Random Processes (Probability Theory and Stochastic Modelling #80)

by Emmanuel Rio

Ces notes sont consacrées aux inégalités et aux théorèmes limites classiques pour les suites de variables aléatoires absolument régulières ou fortement mélangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'étude des processus faiblement dépendants aux statisticiens ou aux probabilistes travaillant sur ces processus.

Refine Search

Showing 4,701 through 4,725 of 55,530 results