Browse Results

Showing 47,726 through 47,750 of 55,634 results

Special Relativity for the Enthusiast

by Thomas Strohm

This textbook introduces special relativity with a focus on a profound understanding of the physics behind the theory. The main part of the book is targeted to undergraduates, for physics education, for undergraduate students in natural sciences in general, and even to interested laypersons. To serve these target groups, the book uses only basic mathematics and, in contrast to many other introductions to special relativity, the book is based on a pedagogical approach that relies on geometry and space-time diagrams to make the surprising predictions of the theory particularly clear. Special relativity is a geometric theory, and space-time diagrams are an efficient and easily understandable way to comprehend its implications. The textbook, however, is also suitable for advanced students and enthusiasts that already learned the basics of the special theory of relativity and want to know more. Special digression sections provide plenty of interesting material. Carefully selected problems with solutions and in-depth explanations for all key experiments help deepen the knowledge.

Special Relativity in General Frames: From Particles to Astrophysics (Graduate Texts in Physics)

by Éric Gourgoulhon

Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn’t restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active galactic nuclei), and including practical applications (Sagnac gyrometers, synchrotron radiation, GPS). In addition, the book provides some mathematical developments, such as the detailed analysis of the Lorentz group and its Lie algebra. The book is suitable for students in the third year of a physics degree or on a masters course, as well as researchers and any reader interested in relativity. Thanks to the geometric approach adopted, this book should also be beneficial for the study of general relativity. “A modern presentation of special relativity must put forward its essential structures, before illustrating them using concrete applications to specific dynamical problems. Such is the challenge (so successfully met!) of the beautiful book by Éric Gourgoulhon.” (excerpt from the Foreword by Thibault Damour)

Special Sciences and the Unity of Science (Logic, Epistemology, and the Unity of Science #24)

by Olga Pombo, Juan Manuel Torres, John Symons and Shahid Rahman

Science is a dynamic process in which the assimilation of new phenomena, perspectives, and hypotheses into the scientific corpus takes place slowly. The apparent disunity of the sciences is the unavoidable consequence of this gradual integration process. Some thinkers label this dynamical circumstance a ‘crisis’. However, a retrospective view of the practical results of the scientific enterprise and of science itself, grants us a clear view of the unity of the human knowledge seeking enterprise. This book provides many arguments, case studies and examples in favor of the unity of science. These contributions touch upon various scientific perspectives and disciplines such as: Physics, Computer Science, Biology, Neuroscience, Cognitive Psychology, and Economics.

The Special Theory of Relativity: A Mathematical Exposition (Universitext)

by Anadijiban Das

Based on courses taught at the University of Dublin, Carnegie Mellon University, and mostly at Simon Fraser University, this book presents the special theory of relativity from a mathematical point of view. It begins with the axioms of the Minkowski vector space and the flat spacetime manifold. Then it discusses the kinematics of special relativity in terms of Lorentz tranformations, and treats the group structure of Lorentz transformations. Extending the discussion to spinors, the author shows how a unimodular mapping of spinor (vector) space can induce a proper, orthochronous Lorentz mapping on the Minkowski vector space. The second part begins with a discussion of relativistic particle mechanics from both the Lagrangian and Hamiltonian points of view. The book then turns to the relativistic (classical) field theory, including a proof of Noether's theorem and discussions of the Klein-Gordon, electromagnetic, Dirac, and non-abelian gauge fields. The final chapter deals with recent work on classical fields in an eight-dimensional covariant phase space.

The Special Theory of Relativity: Einstein’s World in New Axiomatics

by Helmut Günther Volker Müller

This book discusses in detail the special theory of relativity without including all the instruments of theoretical physics, enabling readers who are not budding theoretical physicists to develop competence in the field. An arbitrary but fixed inertial system is chosen, where the known velocity of light is measured. With respect to this system a moving clock loses time and a moving length contracts. The book then presents a definition of simultaneity for the other inertial frames without using the velocity of light. To do so it employs the known reciprocity principle, which in this context serves to provide a definition of simultaneity in the other inertial frames. As a consequence, the Lorentz transformation is deduced and the universal constancy of light is established. With the help of a lattice model of the special theory of relativity the book provides a deeper understanding of the relativistic effects. Further, it discusses the key STR experiments and formulates and solves 54 problems in detail.

The Special Theory of Relativity: A Mathematical Approach

by Farook Rahaman

The book expounds the major topics in the special theory of relativity. It provides a detailed examination of the mathematical foundation of the special theory of relativity, relativistic mass, relativistic mechanics and relativistic electrodynamics. As well as covariant formulation of relativistic mechanics and electrodynamics, the book discusses the relativistic effect on photons. Using a mathematical approach, the text offers graduate students a clear, concise view of the special theory of relativity. Organized into 14 chapters and two appendices, the content is presented in a logical order, and every topic has been dealt with in a simple and lucid manner. To aid understanding of the subject, the book provides numerous relevant worked examples in every chapter. The book’s mathematical approach helps students in their independent study and motivates them to research the topic further.

The Special Theory of Relativity: A Mathematical Approach (UNITEXT #136)

by Farook Rahaman

This textbook expounds the major topics in the special theory of relativity. It provides a detailed examination of the mathematical foundation of the special theory of relativity, relativistic mass, relativistic mechanics, and relativistic electrodynamics. As well as covariant formulation of relativistic mechanics and electrodynamics, the text discusses the relativistic effect on photons. A new chapter on electromagnetic waves as well as several new problems and examples have been included in the second edition of the book. Using the mathematical approach, the text offers graduate students a clear, concise view of the special theory of relativity. Organized into 15 chapters and two appendices, the content is presented in a logical order, and every topic has been dealt with in a simple and lucid manner. To aid understanding of the subject, the text provides numerous relevant worked-out examples in every chapter. The mathematical approach of the text helps students in their independent study and motivates them to research the topic further.

Special Topics in Mathematics for Computer Scientists: Sets, Categories, Topologies and Measures

by Ernst-Erich Doberkat

This textbook addresses the mathematical description of sets, categories, topologies and measures, as part of the basis for advanced areas in theoretical computer science like semantics, programming languages, probabilistic process algebras, modal and dynamic logics and Markov transition systems. Using motivations, rigorous definitions, proofs and various examples, the author systematically introduces the Axiom of Choice, explains Banach-Mazur games and the Axiom of Determinacy, discusses the basic constructions of sets and the interplay of coalgebras and Kripke models for modal logics with an emphasis on Kleisli categories, monads and probabilistic systems. The text further shows various ways of defining topologies, building on selected topics like uniform spaces, Gödel’s Completeness Theorem and topological systems. Finally, measurability, general integration, Borel sets and measures on Polish spaces, as well as the coalgebraic side of Markov transition kernels along with applications to probabilistic interpretations of modal logics are presented. Special emphasis is given to the integration of (co-)algebraic and measure-theoretic structures, a fairly new and exciting field, which is demonstrated through the interpretation of game logics. Readers familiar with basic mathematical structures like groups, Boolean algebras and elementary calculus including mathematical induction will discover a wealth of useful research tools. Throughout the book, exercises offer additional information, and case studies give examples of how the techniques can be applied in diverse areas of theoretical computer science and logics. References to the relevant mathematical literature enable the reader to find the original works and classical treatises, while the bibliographic notes at the end of each chapter provide further insights and discussions of alternative approaches.

Special Topics in Structural Dynamics & Experimental Techniques, Volume 5: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022 (Conference Proceedings of the Society for Experimental Mechanics Series)

by Matt Allen Sheyda Davaria R. Benjamin Davis

Special Topics in Structural Dynamics & Experimental Techniques, Volume 5: Proceedings of the 40th MAC, A Conference and Exposition on Structural Dynamics, 2022, the fifth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on:Analytical MethodsEmerging Technologies for Structural DynamicsEngineering ExtremesExperimental TechniquesFinite Element Techniques

Special Topics in Structural Dynamics & Experimental Techniques, Volume 5: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020 (Conference Proceedings of the Society for Experimental Mechanics Series)

by David S. Epp

Special Topics in Structural Dynamics & Experimental Techniques, Volume 5: Proceedings of the 38th MAC, A Conference and Exposition on Structural Dynamics, 2020, the fifth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on:Analytical MethodsEmerging Technologies for Structural DynamicsEngineering ExtremesExperimental TechniquesFinite Element TechniquesGeneral Topics

Special Topics in the Theory of Piezoelectricity

by Jiashi Yang

Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.

Specialization of Quadratic and Symmetric Bilinear Forms (Algebra and Applications #11)

by Manfred Knebusch

A Mathematician Said Who Can Quote Me a Theorem that’s True? For the ones that I Know Are Simply not So, When the Characteristic is Two! This pretty limerick ?rst came to my ears in May 1998 during a talk by T.Y. Lam 1 on ?eld invariants from the theory of quadratic forms. It is—poetic exaggeration allowed—a suitable motto for this monograph. What is it about? At the beginning of the seventies I drew up a specialization theoryofquadraticandsymmetricbilinear formsover ?elds[32].Let? : K? L?? be a place. Then one can assign a form? (?)toaform? over K in a meaningful way ? if? has “good reduction” with respect to? (see§1.1). The basic idea is to simply apply the place? to the coe?cients of?, which must therefore be in the valuation ring of?. The specialization theory of that time was satisfactory as long as the ?eld L, and therefore also K, had characteristic 2. It served me in the ?rst place as the foundation for a theory of generic splitting of quadratic forms [33], [34]. After a very modest beginning, this theory is now in full bloom. It became important for the understanding of quadratic forms over ?elds, as can be seen from the book [26]of Izhboldin–Kahn–Karpenko–Vishik for instance. One should note that there exists a theoryof(partial)genericsplittingofcentralsimplealgebrasandreductivealgebraic groups, parallel to the theory of generic splitting of quadratic forms (see [29] and the literature cited there).

Specification, Algebra, and Software: Essays Dedicated to Kokichi Futatsugi (Lecture Notes in Computer Science #8373)

by Shusaku Iida José Meseguer Kazuhiro Ogata

This Festschrift volume, published in honor of Kokichi Futatsugi, contains 31 invited contributions from internationally leading researchers in formal methods and software engineering. Prof. Futatsugi is one of the founding fathers of the field of algebraic specification and verification and is a leading researcher in formal methods and software engineering. He has pioneered and advanced novel algebraic methods and languages supporting them such as OBJ and CafeOBJ and has worked tirelessly over the years to bring such methods and tools in contact with software engineering practice. This volume contains contributions from internationally leading researchers in formal methods and software engineering.

Specification and Development of Interactive Systems: Focus on Streams, Interfaces, and Refinement (Monographs in Computer Science)

by Manfred Broy Ketil Stølen

A mathematical and logical foundation for the specification and development of interactive systems based on a model that describes systems in terms of their input/output behavior. Based on this model, the authors build a basic method, called FOCUS, that enables interactive systems to be described by characterizing their histories of message interaction. The book progresses from an introduction and guided tour of FOCUS through streams, specifications and their properties, and behavioral, interface, and conditional refinements.

Specification and Verification of Multi-agent Systems

by Mehdi Dastani Koen V. Hindriks John-Jules Meyer

Specification and Verification of Multi-agent Systems presents a coherent treatment of the area of formal specification and verification of agent-based systems with a special focus on verification of multi-agent programs. This edited volume includes contributions from international leading researchers in the area, addressing logical formalisms and techniques, such as model checking, theorem proving, and axiomatisations for (semi) automatic verification of agent-based systems. Chapters include: • Using Theorem Proving to Verify Properties of Agent Programs • The Refinement of Multi-Agent Systems • Model Checking Agent Communication • Directions for Agent Model Checking • Model Checking Logics of Strategic Ability: Complexity • Correctness of Mult-Agent Programs: A Hybrid Approach • The Norm Implementation Problem in Normative Multi-Agent Systems • A Verification Logic for GOAL Agents • Using the Maude Term Rewriting Language for Agent Development with Formal Foundations • The Cognitive Agents Specification Language and Verification Environment • A Temporal Trace Language for Formal Modelling and Analysis of Agent Systemns • Assurance of Agent Systems: What Role Should Formal Verification Play? Specification and Verification of Multi-agent Systems is a comprehensive guide that makes a useful tool for researchers, practitioners and students, and serves as a reference work summarizing the state of the art in an accessible manner.

Specifying Statistical Models: From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches (Lecture Notes in Statistics #16)

by J. P. Florens M. Mouchart J. P. Raoult L. Simar A. F. M. Smith

During the last decades. the evolution of theoretical statistics has been marked by a considerable expansion of the number of mathematically and computationaly trac­ table models. Faced with this inflation. applied statisticians feel more and more un­ comfortable: they are often hesitant about their traditional (typically parametric) assumptions. such as normal and i. i. d . • ARMA forms for time-series. etc . • but are at the same time afraid of venturing into the jungle of less familiar models. The prob­ lem of the justification for taking up one model rather than another one is thus a crucial one. and can take different forms. (a) ~~~£ifi~~~iQ~ : Do observations suggest the use of a different model from the one initially proposed (e. g. one which takes account of outliers). or do they render plau­ sible a choice from among different proposed models (e. g. fixing or not the value of a certai n parameter) ? (b) tlQ~~L~~l!rQ1!iIMHQ~ : How is it possible to compute a "distance" between a given model and a less (or more) sophisticated one. and what is the technical meaning of such a "distance" ? (c) BQe~~~~~~ : To what extent do the qualities of a procedure. well adapted to a "small" model. deteriorate when this model is replaced by a more general one? This question can be considered not only. as usual. in a parametric framework (contamina­ tion) or in the extension from parametriC to non parametric models but also.

Spectra and Normal Forms (SpringerBriefs in Mathematics)

by Luís Barreira Claudia Valls

This book presents the reader with a streamlined exposition of the notions and results leading to the construction of normal forms and, ultimately, to the construction of smooth conjugacies for the perturbations of tempered exponential dichotomies. These are exponential dichotomies for which the exponential growth rates of the underlying linear dynamics never vanish. In other words, its Lyapunov exponents are all nonzero. The authors consider mostly difference equations, although they also briefly consider the case of differential equations. The content is self-contained and all proofs have been simplified or even rewritten on purpose for the book so that all is as streamlined as possible. Moreover, all chapters are supplemented by detailed notes discussing the origins of the notions and results as well as their proofs, together with the discussion of the proper context, also with references to precursor results and further developments. A useful chapter dependence chart is included in the Preface. The book is aimed at researchers and graduate students who wish to have a sufficiently broad view of the area, without the discussion of accessory material. It can also be used as a basis for graduate courses on spectra, normal forms, and smooth conjugacies.The main components of the exposition are tempered spectra, normal forms, and smooth conjugacies. The first two lie at the core of the theory and have an importance that undoubtedly surpasses the construction of conjugacies. Indeed, the theory is very rich and developed in various directions that are also of interest by themselves. This includes the study of dynamics with discrete and continuous time, of dynamics in finite and infinite-dimensional spaces, as well as of dynamics depending on a parameter. This led the authors to make an exposition not only of tempered spectra and subsequently of normal forms, but also briefly of some important developments in those other directions. Afterwards the discussion continues with the construction of stable and unstable invariant manifolds and, consequently, of smooth conjugacies, while using most of the former material.The notion of tempered spectrum is naturally adapted to the study of nonautonomous dynamics. The reason for this is that any autonomous linear dynamics with a tempered exponential dichotomy has automatically a uniform exponential dichotomy. Most notably, the spectra defined in terms of tempered exponential dichotomies and uniform exponential dichotomies are distinct in general. More precisely, the tempered spectrum may be smaller, which causes that it may lead to less resonances and thus to simpler normal forms. Another important aspect is the need for Lyapunov norms in the study of exponentially decaying perturbations and in the study of parameter-dependent dynamics. Other characteristics are the need for a spectral gap to obtain the regularity of the normal forms on a parameter and the need for a careful control of the small exponential terms in the construction of invariant manifolds and of smooth conjugacies.

Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators

by Lloyd N. Trefethen Mark Embree

Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.

Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators

by Lloyd N. Trefethen Mark Embree

Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.

Spectra of Graphs (Universitext)

by Andries E. Brouwer Willem H. Haemers

This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.

Spectral Action in Noncommutative Geometry (SpringerBriefs in Mathematical Physics #27)

by Michał Eckstein Bruno Iochum

What is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry à la Connes, deliberately unveiling the answers to these questions.After a brief preface flashing the panorama of the spectral approach, a concise primer on spectral triples is given. Chapter 2 is designed to serve as a toolkit for computations. The third chapter offers an in-depth view into the subtle links between the asymptotic expansions of traces of heat operators and meromorphic extensions of the associated spectral zeta functions. Chapter 4 studies the behaviour of the spectral action under fluctuations by gauge potentials. A subjective list of open problems in the field is spelled out in the fifth Chapter. The book concludes with an appendix including some auxiliary tools from geometry and analysis, along with examples of spectral geometries.The book serves both as a compendium for researchers in the domain of noncommutative geometry and an invitation to mathematical physicists looking for new concepts.

Spectral Analysis: Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Varenna (Como), Italy, August 24-September 2, 1973 (C.I.M.E. Summer Schools #64)

by Jaures Cecconi

G. Bottaro: Quelques résultats d’analyse spectrale pour des opérateurs différentiels à coefficients constants sur des domaines non bornés.- L. Gårding: Eigenfuction expansions.- C. Goulaouic: Valeurs propres de problèmes aux limites irréguliers: applications.- G. Grubb: Essential spectra of elliptic systems on compact manifolds.- J.Cl. Guillot: Quelques résultats récents en Scattering.- N. Schechter: Theory of perturbations of partial differential operators.- C.H. Wilcox: Spectral analysis of the Laplacian with a discontinuous coefficient.

Spectral Analysis and Filter Theory in Applied Geophysics

by Burkhard Buttkus

This state-of-the-art survey serves as a complete overview of the subject. Besides the principles and theoretical foundations, emphasis is laid on practical applicability -- describing not only classical methods, but also modern developments and their applications. Students, researchers and practitioners, especially in the fields of data registration, treatment and evaluation, will find this a wealth of information.

Spectral Analysis of Growing Graphs: A Quantum Probability Point of View (SpringerBriefs in Mathematical Physics #20)

by Nobuaki Obata

This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs.This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials.

Spectral Analysis of Large Dimensional Random Matrices (Springer Series in Statistics)

by Zhidong Bai Jack W. Silverstein

The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.

Refine Search

Showing 47,726 through 47,750 of 55,634 results