Browse Results

Showing 48,826 through 48,850 of 54,676 results

Stochastic Modelling for Systems Biology, Third Edition (Chapman & Hall/CRC Computational Biology Series)

by Darren J. Wilkinson

Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.

Stochastic Modelling in Innovative Manufacturing: Proceedings, Cambridge, U.K., July 21–22, 1995 (Lecture Notes in Economics and Mathematical Systems #445)

by Anthony H. Christer Shunji Osaki Lyn C. Thomas

This monograph contains some ofthe papers presented at a UK-Japanese Workshop on Stochastic Modelling in Innovative Manufacturing held at Churchill College, Cambridge on July 20 and 21st 1995, sponsored jointly by the UK Engineering and Physical Science Research Council and the British Council. Attending were 19 UK and 24 Japanese delegates representing 28 institutions. The aim of the workshop was to discuss the modelling work being done by researchers in both countries on the new activities and challenges occurring in manufacturing. These challenges have arisen because of the increasingly uncertain environment of modern manufacturing due to the commercial need to respond more quickly to customers demands, and the move to just-in-time manufacturing and flexible manufacturing systems and the increasing requirements for quality. As well as time pressure, the increasing importance of the quality of the products, the need to hold the minimum stock of components, and the importance of reliable production systems has meant that manufacturers need to design production systems that perform well in randomly varying conditions and that their operating procedures can respond to changes in conditions and requirements. This has increased the need to understand how manufacturing systems work in the random environments, and so emphasised the importance of stochastic models of such systems.

Stochastic Modelling in Physical Oceanography (Progress in Probability #39)

by Robert Adler Peter Müller B.L. Rozovskii

The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini­ tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re­ liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all.

Stochastic Modelling of Big Data in Finance (Chapman and Hall/CRC Financial Mathematics Series)

by Anatoliy Swishchuk

Stochastic Modelling of Big Data in Finance provides a rigorous overview and exploration of sto- chastic modelling of big data in finance (BDF). The book describes various stochastic models, including multivariate models, to deal with big data in finance. This includes data in high-frequency and algorithmic trading, specifically in limit order books (LOB), and shows how those models can be applied to different datasets to describe the dynamics of LOB, and to figure out which model is the best with respect to a specific data set. The results of the book may be used to also solve acquisition, liquidation and market making problems, and other optimization problems in finance.Features• Self-contained book suitable for graduate students and post-doctoral fellows in financial math- ematics and data science, as well as for practitioners working in the financial industry who deal with big data• All results are presented visually to aid in understanding of concepts Dr. Anatoliy Swishchuk is a Professor in Mathematical Finance at the Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada. He got his B.Sc. and M.Sc. degrees from Kyiv State University, Kyiv, Ukraine. He earned two doctorate degrees in Mathematics and Physics (PhD and DSc) from the prestigious National Academy of Sciences of Ukraine (NASU), Kiev, Ukraine, and is a recipient of NASU award for young scientist with a gold medal for series of research publica- tions in random evolutions and their applications.Dr. Swishchuk is a chair and organizer of finance and energy finance seminar ‘Lunch at the Lab’ at the Department of Mathematics and Statistics. Dr. Swishchuk is a Director of Mathematical and Compu- tational Finance Laboratory at the University of Calgary. He was a steering committee member of the Professional Risk Managers International Association (PRMIA), Canada (2006-2015), and is a steer- ing committee member of Global Association of Risk Professionals (GARP), Canada (since 2015).Dr. Swishchuk is a creator of mathematical finance program at the Department of Mathematics & Sta- tistics. He is also a proponent for a new specialization “Financial and Energy Markets Data Modelling” in the Data Science and Analytics program. His research areas include financial mathematics, ran- dom evolutions and their applications, biomathematics, stochastic calculus, and he serves on editorial boards for four research journals. He is the author of more than 200 publications, including 15 books and more than 150 articles in peer-reviewed journals. In 2018 he received a Peak Scholar award.

Stochastic Modelling of Big Data in Finance (Chapman and Hall/CRC Financial Mathematics Series)

by Anatoliy Swishchuk

Stochastic Modelling of Big Data in Finance provides a rigorous overview and exploration of sto- chastic modelling of big data in finance (BDF). The book describes various stochastic models, including multivariate models, to deal with big data in finance. This includes data in high-frequency and algorithmic trading, specifically in limit order books (LOB), and shows how those models can be applied to different datasets to describe the dynamics of LOB, and to figure out which model is the best with respect to a specific data set. The results of the book may be used to also solve acquisition, liquidation and market making problems, and other optimization problems in finance.Features• Self-contained book suitable for graduate students and post-doctoral fellows in financial math- ematics and data science, as well as for practitioners working in the financial industry who deal with big data• All results are presented visually to aid in understanding of concepts Dr. Anatoliy Swishchuk is a Professor in Mathematical Finance at the Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada. He got his B.Sc. and M.Sc. degrees from Kyiv State University, Kyiv, Ukraine. He earned two doctorate degrees in Mathematics and Physics (PhD and DSc) from the prestigious National Academy of Sciences of Ukraine (NASU), Kiev, Ukraine, and is a recipient of NASU award for young scientist with a gold medal for series of research publica- tions in random evolutions and their applications.Dr. Swishchuk is a chair and organizer of finance and energy finance seminar ‘Lunch at the Lab’ at the Department of Mathematics and Statistics. Dr. Swishchuk is a Director of Mathematical and Compu- tational Finance Laboratory at the University of Calgary. He was a steering committee member of the Professional Risk Managers International Association (PRMIA), Canada (2006-2015), and is a steer- ing committee member of Global Association of Risk Professionals (GARP), Canada (since 2015).Dr. Swishchuk is a creator of mathematical finance program at the Department of Mathematics & Sta- tistics. He is also a proponent for a new specialization “Financial and Energy Markets Data Modelling” in the Data Science and Analytics program. His research areas include financial mathematics, ran- dom evolutions and their applications, biomathematics, stochastic calculus, and he serves on editorial boards for four research journals. He is the author of more than 200 publications, including 15 books and more than 150 articles in peer-reviewed journals. In 2018 he received a Peak Scholar award.

Stochastic Models for Carcinogenesis (Statistics: A Series Of Textbooks And Monographs)

by Wai-Yuan Tan

An up-to-date survey of mathematical models of carcinogenesis, providing the most recent findings of cancer biology as evidence of the models, as well as extensive bibliographies of cancer biology and in-depth mathematical analyses for each of the models. May be used as a reference for biostaticians, biometricians, mathematical and molecular biologists, applied mathematicians, oncologists, cancer and toxicology researchers, environmental scientists, and graduate students in these fields.

Stochastic Models for Carcinogenesis (Statistics: A Series Of Textbooks And Monographs)

by Wai-Yuan Tan

An up-to-date survey of mathematical models of carcinogenesis, providing the most recent findings of cancer biology as evidence of the models, as well as extensive bibliographies of cancer biology and in-depth mathematical analyses for each of the models. May be used as a reference for biostaticians, biometricians, mathematical and molecular biologists, applied mathematicians, oncologists, cancer and toxicology researchers, environmental scientists, and graduate students in these fields.

Stochastic Models for Fault Tolerance: Restart, Rejuvenation and Checkpointing

by Katinka Wolter

As modern society relies on the fault-free operation of complex computing systems, system fault-tolerance has become an indispensable requirement. Therefore, we need mechanisms that guarantee correct service in cases where system components fail, be they software or hardware elements. Redundancy patterns are commonly used, for either redundancy in space or redundancy in time. Wolter’s book details methods of redundancy in time that need to be issued at the right moment. In particular, she addresses the so-called "timeout selection problem", i.e., the question of choosing the right time for different fault-tolerance mechanisms like restart, rejuvenation and checkpointing. Restart indicates the pure system restart, rejuvenation denotes the restart of the operating environment of a task, and checkpointing includes saving the system state periodically and reinitializing the system at the most recent checkpoint upon failure of the system. Her presentation includes a brief introduction to the methods, their detailed stochastic description, and also aspects of their efficient implementation in real-world systems. The book is targeted at researchers and graduate students in system dependability, stochastic modeling and software reliability. Readers will find here an up-to-date overview of the key theoretical results, making this the only comprehensive text on stochastic models for restart-related problems.

Stochastic Models for Prices Dynamics in Energy and Commodity Markets: An Infinite-Dimensional Perspective (Springer Finance)

by Fred Espen Benth Paul Krühner

This monograph presents a theory for random field models in time and space, viewed as stochastic processes with values in a Hilbert space, to model the stochastic dynamics of forward and futures prices in energy, power, and commodity markets. In this book, the well-known Heath–Jarrow–Morton approach from interest rate theory is adopted and extended into an infinite-dimensional framework, allowing for flexible modeling of price stochasticity across time and along the term structure curve. Various models are introduced based on stochastic partial differential equations with infinite-dimensional Lévy processes as noise drivers, emphasizing random fields described by low-dimensional parametric covariance functions instead of classical high-dimensional factor models. The Filipović space, a separable Hilbert space of Sobolev type, is found to be a convenient state space for the dynamics of forward and futures term structures. The monograph provides a classification of important operators in this space, covering covariance operators and the stochastic modeling of volatility term structures, including the Samuelson effect. Fourier methods are employed to price many derivatives of interest in energy, power, and commodity markets, and sensitivity 'delta' expressions can be derived. Additionally, the monograph covers forward curve smoothing, the connection between forwards with fixed delivery and delivery period, as well as the classical theory of forward and futures pricing. This monograph will appeal to researchers and graduate students interested in mathematical finance and stochastic analysis applied in the challenging markets of energy, power, and commodities. Practitioners seeking sophisticated yet flexible and analytically tractable risk models will also find it valuable.

Stochastic Models for Spike Trains of Single Neurons (Lecture Notes in Biomathematics #16)

by S.K. Srinivasan Gopalan Sampath

1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic deletion model 45 5. 1. 2 Higher-order properties of the sequence of r-events 55 5. 1. 3 Extended version of Model 5. 1 - Model 60 5. 2 5. 2 Models with dependent interaction of excitatory and inhibitory sequences - MOdels 5. 3 and 5.

Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior (Mathematical Biosciences Institute Lecture Series #1.4)

by Sylvie Meleard Vincent Bansaye

In this contribution, several probabilistic tools to study population dynamics are developed. The focus is on scaling limits of qualitatively different stochastic individual based models and the long time behavior of some classes of limiting processes.Structured population dynamics are modeled by measure-valued processes describing the individual behaviors and taking into account the demographic and mutational parameters, and possible interactions between individuals. Many quantitative parameters appear in these models and several relevant normalizations are considered, leading to infinite-dimensional deterministic or stochastic large-population approximations. Biologically relevant questions are considered, such as extinction criteria, the effect of large birth events, the impact of environmental catastrophes, the mutation-selection trade-off, recovery criteria in parasite infections, genealogical properties of a sample of individuals.These notes originated from a lecture series on Structured Population Dynamics at Ecole polytechnique (France).Vincent Bansaye and Sylvie Méléard are Professors at Ecole Polytechnique (France). They are a specialists of branching processes and random particle systems in biology. Most of their research concerns the applications of probability to biodiversity, ecology and evolution.

Stochastic Models for Time Series (Mathématiques et Applications #80)

by Paul Doukhan

This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit theorems) are described under SRD; mixing and weak dependence are also reviewed. In closing, it describes moment techniques together with their relations to cumulant sums as well as an application to kernel type estimation.The appendix reviews basic probability theory facts and discusses useful laws stemming from the Gaussian laws as well as the basic principles of probability, and is completed by R-scripts used for the figures. Richly illustrated with examples and simulations, the book is recommended for advanced master courses for mathematicians just entering the field of time series, and statisticians who want more mathematical insights into the background of non-linear time series.

Stochastic Models in Geosystems (The IMA Volumes in Mathematics and its Applications #85)

by Stanislav A. Molchanov Wojbor A. Woyczynski

This IMA Volume in Mathematics and its Applications STOCHASTIC MODELS IN GEOSYSTEMS is based on the proceedings of a workshop with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Stanislav A. Molchanov and Wojbor A. Woyczynski for their hard work in organizing this meeting and in edit­ ing the proceedings. We also take this opportunity to thank the National Science Foundation, the Office of N aval Research, the Army Research Of­ fice, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. v PREFACE A workshop on Stochastic Models in Geosystems was held during the week of May 16, 1994 at the Institute for Mathematics and Its Applica­ tions at the University of Minnesota. It was part of the Special Year on Emerging Applications of Prob ability program put together by an organiz­ ing committee chaired by J. Michael Steele. The invited speakers represented a broad interdisciplinary spectrum including mathematics, statistics, physics, geophysics, astrophysics, atmo­ spheric physics, fluid mechanics, seismology, and oceanography. The com­ mon underlying theme was stochastic modeling of geophysical phenomena and papers appearing in this volume reflect a number of research directions that are currently pursued in these areas.

Stochastic Models in Life Insurance (EAA Series)

by Michael Koller

The book provides a sound mathematical base for life insurance mathematics and applies the underlying concepts to concrete examples. Moreover the models presented make it possible to model life insurance policies by means of Markov chains. Two chapters covering ALM and abstract valuation concepts on the background of Solvency II complete this volume. Numerous examples and a parallel treatment of discrete and continuous approaches help the reader to implement the theory directly in practice.

Stochastic Models in Reliability (Stochastic Modelling and Applied Probability #41)

by Terje Aven Uwe Jensen

A comprehensive up-to-date presentation of some of the classical areas of reliability, based on a more advanced probabilistic framework using the modern theory of stochastic processes. This framework allows analysts to formulate general failure models, establish formulae for computing various performance measures, as well as determine how to identify optimal replacement policies in complex situations.

Stochastic Models in Reliability (Stochastic Modelling and Applied Probability #41)

by Terje Aven Uwe Jensen

This book provides a comprehensive up-to-date presentation of some of the classical areas of reliability, based on a more advanced probabilistic framework using the modern theory of stochastic processes. This framework allows analysts to formulate general failure models, establish formulae for computing various performance measures, as well as determine how to identify optimal replacement policies in complex situations. In this second edition of the book, two major topics have been added to the original version: copula models which are used to study the effect of structural dependencies on the system reliability; and maintenance optimization which highlights delay time models under safety constraints. Terje Aven is Professor of Reliability and Risk Analysis at University of Stavanger, Norway. Uwe Jensen is working as a Professor at the Institute of Applied Mathematics and Statistics of the University of Hohenheim in Stuttgart, Germany. Review of first edition: "This is an excellent book on mathematical, statistical and stochastic models in reliability. The authors have done an excellent job of unifying some of the stochastic models in reliability. The book is a good reference book but may not be suitable as a textbook for students in professional fields such as engineering. This book may be used for graduate level seminar courses for students who have had at least the first course in stochastic processes and some knowledge of reliability mathematics. It should be a good reference book for researchers in reliability mathematics." --Mathematical Reviews (2000)

Stochastic Models in Reliability and Maintenance

by Shunji Osaki

Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main­ tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which classical renewal theory is surveyed and computa­ tional methods are described. Chapter 2 discusses "Stochastic Orders," and in it some definitions and concepts on stochastic orders are described and ag­ ing properties can be characterized by stochastic orders. Chapter 3 is devoted to "Classical Maintenance Models," under which the so-called age, block and other replacement models are surveyed. Chapter 4 discusses "Modeling Plant Maintenance," describing how maintenance practice can be carried out for plant maintenance.

Stochastic Models in Reliability Engineering (Advanced Research in Reliability and System Assurance Engineering)

by Lirong Cui Ilia Frenkel Anatoly Lisnianski

This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, experiments, and applied probability and statistics.

Stochastic Models in Reliability Engineering (Advanced Research in Reliability and System Assurance Engineering)

by Lirong Cui Ilia Frenkel Anatoly Lisnianski

This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, experiments, and applied probability and statistics.

Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results and Geometric Methods (Applied and Numerical Harmonic Analysis)

by Gregory S. Chirikjian

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena.Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.

Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications (Applied and Numerical Harmonic Analysis)

by Gregory S. Chirikjian

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena.Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises, motivating examples, and real-world applications make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.

Stochastic Models of Air Pollutant Concentration (Lecture Notes in Statistics #30)

by Jan Grandell

About fifteen years ago Henning Rodhe and I disscussed the calculation of residence times, or lifetimes, of certain air pollutants for the first time. He was interested in pollutants which were mainly removed from the atmosphere by precipitation scavenging. His idea was to base the calculation on statistical models for the variation of the precipitation i~tensity and not only on the average precipitation intensity. In order to illustrate the importance of taking the variation into account we considered a simple model - here called the Markov model - for the precipitation intensity and computed the distribution of the residence time of an aerosol particle. Our expression for the average residence time - here formula (13- was rather much used by meteorologists. Certainly we were pleased, but while our ambition had been to provide an illustration, our work was merely understood as a proposal for a realistic model. Therefore we found it natural to search for more general models. The mathematical problems involved were the origin of my interest in this field. A brief outline of the background, purpose and content of this paper is given in section 1. It is a pleasure to thank Gunnar Englund, Georg Lindgren, Henning Rodhe and Michael Stein for their substantial help in the pre­ paration of this paper and Iren Patricius for her assistance in typing.

Stochastic Models of Financial Mathematics

by Vigirdas Mackevicius

This book presents a short introduction to continuous-time financial models. An overview of the basics of stochastic analysis precedes a focus on the Black–Scholes and interest rate models. Other topics covered include self-financing strategies, option pricing, exotic options and risk-neutral probabilities. Vasicek, Cox−Ingersoll−Ross, and Heath–Jarrow–Morton interest rate models are also explored. The author presents practitioners with a basic introduction, with more rigorous information provided for mathematicians. The reader is assumed to be familiar with the basics of probability theory. Some basic knowledge of stochastic integration and differential equations theory is preferable, although all preliminary information is given in the first part of the book. Some relatively simple theoretical exercises are also provided.About continuous-time stochastic models of financial mathematicsBlack-Sholes model and interest rate modelsRequiring a minimum knowledge of stochastic integration and stochastic differential equations

Stochastic Models of Systems (Mathematics and Its Applications #469)

by Vladimir S. Korolyuk Vladimir V. Korolyuk

In this monograph stochastic models of systems analysis are discussed. It covers many aspects and different stages from the construction of mathematical models of real systems, through mathematical analysis of models based on simplification methods, to the interpretation of real stochastic systems. The stochastic models described here share the property that their evolutionary aspects develop under the influence of random factors. It has been assumed that the evolution takes place in a random medium, i.e. unilateral interaction between the system and the medium. As only Markovian models of random medium are considered in this book, the stochastic models described here are determined by two processes, a switching process describing the evolution of the systems and a switching process describing the changes of the random medium. Audience: This book will be of interest to postgraduate students and researchers whose work involves probability theory, stochastic processes, mathematical systems theory, ordinary differential equations, operator theory, or mathematical modelling and industrial mathematics.

Refine Search

Showing 48,826 through 48,850 of 54,676 results