Browse Results

Showing 11,251 through 11,275 of 100,000 results

Biomedical Image Registration: Second International Workshop, WBIR 2003, Philadelphia, PA, USA, June 23-24, 2003, Revised Papers (Lecture Notes in Computer Science #2717)

by James C. Gee J. B. Antoine Maintz Michael W. Vannier

The 2nd International Workshop on Biomedical Image Registration (WBIR) was held June 23–24, 2003, at the University of Pennsylvania, Philadelphia. Following the success of the ?rst workshop in Bled, Slovenia, this meeting aimed to once again bring together leading researchers in the area of biomedical image registration to present and discuss recent developments in the ?eld. Thetheory,implementationandapplicationofimageregistrationinmedicine have become major themes in nearly every scienti?c forum dedicated to image processingandanalysis. Thisintenseinterestre?ectsthe?eld’simportantrolein theconductofabroadandcontinuallygrowingrangeofstudies. Indeed,thete- niques have enabled some of the most exciting contemporary developments in the clinical and research application of medical imaging, including fusion of m- timodality data to assist clinical interpretation; change detection in longitudinal studies; brain shift modeling to improve anatomic localization in neurosurgical procedures; cardiac motion quanti?cation; construction of probabilistic atlases of organ structure and function; and large-scale phenotyping in animal models. WBIR was conceived to provide the burgeoning community of investigators in biomedical image registration an opportunity to share, discuss and stimulate developments in registration research and application at a meeting exclusively devoted to the topic. The format of this year’s workshop consisted of invited talks, author presentations and ample opportunities for discussion, the latter including an elegant reception and dinner hosted at the Mutter ¨ Museum. A representation of the best work in the ?eld, selected by peer review from full manuscripts,waspresentedinsingle-tracksessions. Thepapers,whichaddressed the full diversity of registration topics, are reproduced in this volume, along with enlightening essays by some of the invited speakers.

Biomedical Image Registration: 8th International Workshop, WBIR 2018, Leiden, The Netherlands, June 28-29, 2018, Proceedings (Lecture Notes in Computer Science #10883)

by Stefan Klein Marius Staring Stanley Durrleman Stefan Sommer

This book constitutes the refereed proceedings of the 8th International Workshop on Biomedical Image Registration, WBIR 2018, held in Leiden, The Netherlands, in June 2018. The 11 full and poster papers included in this volume were carefully reviewed and selected from 17 submitted papers. The papers are organized in the following topical sections: Sliding Motion, Groupwise Registration, Acceleration, and Applications and Evaluation.

Biomedical Image Registration: 6th International Workshop, WBIR 2014, London, UK, July 7-8, 2014, Proceedings (Lecture Notes in Computer Science #8545)

by Sebastien Ourselin Marc Modat

This book constitutes the refereed proceedings of the 6th International Workshop on Biomedical Image Registration, WBIR 2014, held in London, UK, in July 2014.The 16 full papers and 8 poster papers included in this volume were carefully reviewed and selected from numerous submitted papers. The full papers are organized in the following topical sections: computational efficiency, model based regularisation, optimisation, reconstruction, interventional application and application specific measures of similarity.

Biomedical Image Registration: Third International Workshop, WBIR 2006, Utrecht, The Netherlands, July 9-11, 2006, Proceedings (Lecture Notes in Computer Science #4057)

by Josien P. W. Pluim Bostjan Likar Frans A. Gerritsen

This book constitutes the thoroughly refereed post-proceedings of the Third International Workshop on Biomedical Image Registration. The 20 revised full papers and 18 revised poster papers presented were carefully reviewed and selected for inclusion in the book. The papers cover all areas of biomedical image registration; methods of registration, biomedical applications, and validation of registration.

Biomedical Image Segmentation: Advances and Trends

by Ayman El-Baz, Xiaoyi Jiang and Jasjit S. Suri

As one of the most important tasks in biomedical imaging, image segmentation provides the foundation for quantitative reasoning and diagnostic techniques. A large variety of different imaging techniques, each with its own physical principle and characteristics (e.g., noise modeling), often requires modality-specific algorithmic treatment. In recent years, substantial progress has been made to biomedical image segmentation. Biomedical image segmentation is characterized by several specific factors. This book presents an overview of the advanced segmentation algorithms and their applications.

Biomedical Image Segmentation: Advances and Trends

by Ayman El-Baz Xiaoyi Jiang Jasjit S. Suri

As one of the most important tasks in biomedical imaging, image segmentation provides the foundation for quantitative reasoning and diagnostic techniques. A large variety of different imaging techniques, each with its own physical principle and characteristics (e.g., noise modeling), often requires modality-specific algorithmic treatment. In recent years, substantial progress has been made to biomedical image segmentation. Biomedical image segmentation is characterized by several specific factors. This book presents an overview of the advanced segmentation algorithms and their applications.

Biomedical Images and Computers: Selected Papers Presented at the United States-France Seminar on Biomedical Image Processing, St. Pierre de Chartreuse, France, May 27–31, 1980 (Lecture Notes in Medical Informatics #17)

by J. Sklansky J. C. Bisconte

The technology of automatic pattern recognition and digital image processing, after over two decades of basic research, is now appearing in important applications in biology and medicine as weIl as industrial, military and aerospace systems. In response to a suggestion from Mr. Norman Caplan, ·the Program Director for Automation, Bioengineering and Sensing at the United States National Science Foundation, the authors of this book organized the first Uni ted States-France Seminar on Biomedical Image Processing. The seminar met at the Hotel Beau Site, St. Pierre de Chartreuse, France on May 27-31, 1980. This book contains most of the papers presented at this seminar, as weIl as two papers (by Bisconte et al. and by Ploem ~ al.) discussed at the seminar but not appearing on the program. We view the subject matter of this seminar as a confluence amon~ three broad scientific and engineering disciplines: 1) biology and medicine, 2) imaging and optics, and 3) computer science and computer engineering. The seminar had three objectives: 1) to discuss the state of the art of biomedical image processing with emphasis on four themes: microscopic image analysis, radiological image analysis, tomography, and image processing technology; 2) to place values on directions for future research so as to give guidance to agencies supporting such research; and 3) to explore and encourage various areas of cooperative research between French and Uni ted States scientists within the field of Biomedical Image Processing.

Biomedical Imaging

by Robert Plonsey Karen M. Mudry Joseph D. Bronzino

Comprised of chapters carefully selected from CRC‘s best-selling engineering handbooks, volumes in the Principles and Applications in Engineering series provide convenient, economical references sharply focused on particular engineering topics and subspecialties. Culled from the Biomedical Engineering Handbook, Biomedical Imaging</

Biomedical Imaging and Computational Modeling in Biomechanics (Lecture Notes in Computational Vision and Biomechanics #4)

by Ugo Andreaus and Daniela Iacoviello

This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and biomedical imaging and computational modeling in cardiovascular disease.The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis

Biomedical Implants: Materials, Design, and Manufacturing

by Ravi K. Dwivedi, Premanand S. Chauhan, Avadesh K. Sharma, Madhavi Singh, and Anupma Agarwal

This book provides a comprehensive overview of the development of implants, from the selection of materials to the outcome of the process. It covers various steps, including biocompatible material, synthesis, and characterization, compatibility and limitations of materials, specific implants, and finite element analysis of medical implants. It also presents a comparison between predictions and experimental results by studying real-world problems and addresses the issue of sustainability in implant manufacturing, process modeling, and optimization in additive manufacturing supported by case studies. Features:• Covers the development of implants from the selection of material to the suitable process of manufacturing technologies.• Includes biocompatible material, synthesis, characterization, compatibility, and limitations of materials.• Reviews biofabrication in terms of artificial organs and soft tissues.• Discusses implant manufacturing, including additive and micro-manufacturing and failure analysis through case studies.• Addresses the issue of sustainability in implant manufacturing. This book is intended for researchers and graduate students specializing in mechanical, biomedical, healthcare engineering, biomaterials, and additive manufacturing.

Biomedical Implants: Materials, Design, and Manufacturing


This book provides a comprehensive overview of the development of implants, from the selection of materials to the outcome of the process. It covers various steps, including biocompatible material, synthesis, and characterization, compatibility and limitations of materials, specific implants, and finite element analysis of medical implants. It also presents a comparison between predictions and experimental results by studying real-world problems and addresses the issue of sustainability in implant manufacturing, process modeling, and optimization in additive manufacturing supported by case studies. Features:• Covers the development of implants from the selection of material to the suitable process of manufacturing technologies.• Includes biocompatible material, synthesis, characterization, compatibility, and limitations of materials.• Reviews biofabrication in terms of artificial organs and soft tissues.• Discusses implant manufacturing, including additive and micro-manufacturing and failure analysis through case studies.• Addresses the issue of sustainability in implant manufacturing. This book is intended for researchers and graduate students specializing in mechanical, biomedical, healthcare engineering, biomaterials, and additive manufacturing.

Biomedical Informatics (Methods in Molecular Biology #569)

by Vadim Astakhov

In past decades, the area of bioinformatics has proved to be both dynamic and vital, producing a wide spectrum of novel approaches and assuming an increasingly important role in modern bio-technological development. In Biomedical Informatics, expert researchers explore cutting-edge new advances in the field, providing an overview of novel cyberinfrastructures which are currently under development in various bio-medical centers across the world. Chapters demonstrate various architectures for large-scale collaboration, offer modern approaches currently used in various areas of bioinformatics, and highlight the software challenges associated with large-scale biomedical informatics. Composed in the highly successful Methods in Molecular Biology™ series format, chapters include a brief introduction, detailed methods, and a Notes section which shares tips on troubleshooting and avoiding known pitfalls. Wide-ranging and innovative, Biomedical Informatics is an essential manual for newcomers to this area, as well as an invaluable addition to the laboratories and offices of the most practiced researchers.

Biomedical Informatics: Computer Applications in Health Care and Biomedicine

by Michael F. Chiang

This 5th edition of this essential textbook continues to meet the growing demand of practitioners, researchers, educators, and students for a comprehensive introduction to key topics in biomedical informatics and the underlying scientific issues that sit at the intersection of biomedical science, patient care, public health and information technology (IT). Emphasizing the conceptual basis of the field rather than technical details, it provides the tools for study required for readers to comprehend, assess, and utilize biomedical informatics and health IT. It focuses on practical examples, a guide to additional literature, chapter summaries and a comprehensive glossary with concise definitions of recurring terms for self-study or classroom use.Biomedical Informatics: Computer Applications in Health Care and Biomedicine reflects the remarkable changes in both computing and health care that continue to occur and the exploding interest in the role that IT must play in care coordination and the melding of genomics with innovations in clinical practice and treatment. New and heavily revised chapters have been introduced on human-computer interaction, mHealth, personal health informatics and precision medicine, while the structure of the other chapters has undergone extensive revisions to reflect the developments in the area. The organization and philosophy remain unchanged, focusing on the science of information and knowledge management, and the role of computers and communications in modern biomedical research, health and health care.

Biomedical Informatics: An Introduction to Information Systems and Software in Medicine and Health

by David J. Lubliner

Medical informatics lies at the intersection of computer science and medicine, and understanding critical aspects of both fields provides for more proficient practitioners. Biomedical Informatics: An Introduction to Information Systems and Software in Medicine and Health supplies a cohesive narrative of the multidisciplinary concepts linking the fi

Biomedical Informatics: Computer Applications in Health Care and Biomedicine (Health Informatics Ser.)

by Edward H. Shortliffe James J. Cimino

The practice of modern medicine and biomedical research requires sophisticated information technologies with which to manage patient information, plan diagnostic procedures, interpret laboratory results, and carry out investigations. Biomedical Informatics provides both a conceptual framework and a practical inspiration for this swiftly emerging scientific discipline at the intersection of computer science, decision science, information science, cognitive science, and biomedicine. Now revised and in its third edition, this text meets the growing demand by practitioners, researchers, and students for a comprehensive introduction to key topics in the field. Authored by leaders in medical informatics and extensively tested in their courses, the chapters in this volume constitute an effective textbook for students of medical informatics and its areas of application. The book is also a useful reference work for individual readers needing to understand the role that computers can play in the provision of clinical services and the pursuit of biological questions. The volume is organized so as first to explain basic concepts and then to illustrate them with specific systems and technologies.

Biomedical Informatics: Computer Applications in Health Care and Biomedicine (Health Informatics)

by Edward H. Shortliffe James J. Cimino

This book focuses on the role of computers in the provision of medical services. It provides both a conceptual framework and a practical approach for the implementation and management of IT used to improve the delivery of health care. Inspired by a Stanford University training program, it fills the need for a high quality text in computers and medicine. It meets the growing demand by practitioners, researchers, and students for a comprehensive introduction to key topics in the field. Completely revised and expanded, this work includes several new chapters filled with brand new material.

Biomedical Informatics and Technology: First International Conference, ACBIT 2013, Aizu-Wakamatsu, Japan, September 16-17, 2013. Revised Selected Papers (Communications in Computer and Information Science #404)

by Tuan D. Pham Kazuhisha Ichikawa Mayumi Oyama-Higa Danny Coomans Xiaoyi Jiang

This book constitutes the refereed proceedings of the First International Conference on Biomedical Informatics and Technology, ACBIT 2013, held in Aizu-Wakamatsu, Japan, in September 2013. The ??? revised full papers presented together with 14 keynotes and invited talks were carefully reviewed and selected from 48 submissions. The papers address important problems in medicine, biology and health using image analysis, computer vision, pattern analysis and classification, information visualization, signal processing, control theory, information theory, statistical analysis, information fusion, numerical analysis, fractals and chaos, optimization, simulation and modeling, parallel computing, computational intelligence methods, machine learning, data mining, decision support systems, database integration and management, cognitive modeling, and applied linguistics.

Biomedical Informatics for Cancer Research

by Michael F. Ochs John T. Casagrande Ramana V. V. Davuluri

view, showing that multiple molecular pathways must be affected for cancer to develop, but with different specific proteins in each pathway mutated or differentially expressed in a given tumor (The Cancer Genome Atlas Research Network 2008; Parsons et al. 2008). Different studies demonstrated that while widespread mutations exist in cancer, not all mutations drive cancer development (Lin et al. 2007). This suggests a need to target only a deleterious subset of aberrant proteins, since any tre- ment must aim to improve health to justify its potential side effects. Treatment for cancer must become highly individualized, focusing on the specific aberrant driver proteins in an individual. This drives a need for informatics in cancer far beyond the need in other diseases. For instance, routine treatment with statins has become widespread for minimizing heart disease, with most patients responding to standard doses (Wilt et al. 2004). In contrast, standard treatment for cancer must become tailored to the molecular phenotype of an individual tumor, with each patient receiving a different combination of therapeutics aimed at the specific aberrant proteins driving the cancer. Tracking the aberrations that drive cancers, identifying biomarkers unique to each individual for molecular-level di- nosis and treatment response, monitoring adverse events and complex dosing schedules, and providing annotated molecular data for ongoing research to improve treatments comprise a major biomedical informatics need.

Biomedical Innovation in Fertility Care: Evidence Challenges, Commercialization, and the Market for Hope

by Manuela Perrotta

Available Open Access digitally under CC-BY-NC-ND licence.This book analyses the clashes between evidence-based medicine and the dynamics of an increasingly privatised fertility care industry. With a unique focus on "add-on" treatments, it reveals how these controversial treatments are now widespread and can border on hopemongering.

Biomedical Innovation in Fertility Care: Evidence Challenges, Commercialization, and the Market for Hope

by Manuela Perrotta

Available Open Access digitally under CC-BY-NC-ND licence.This book analyses the clashes between evidence-based medicine and the dynamics of an increasingly privatised fertility care industry. With a unique focus on "add-on" treatments, it reveals how these controversial treatments are now widespread and can border on hopemongering.

Biomedical Inorganic Polymers: Bioactivity and Applications of Natural and Synthetic Polymeric Inorganic Molecules (Progress in Molecular and Subcellular Biology #54)

by Werner E. G. Müller, Xiaohong Wang and Heinz C. Schröder

In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed “biosilica” and synthetic “bioglass”) and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as “bioglass” for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for treatment of humans. In addition to polysilicates and polyphosphate, there are a series of other inorganic polymers including polyarsenate and polyvanadate, whose biological / biomedical properties have been only marginally studied so far. Moreover, the combined application of inorganic polymers and organic polymeric molecules (formation of organic-inorganic hybrid materials) provides a variety of new materials with novel property combinations and diverse applications in nanomedicine. The planned book summarizes the present state of knowledge on a large group of inorganic polymers that had hitherto been mainly considered with regard to their chemistry but not comprehensively reviewed with respect to their potential biomedical applications.

The Biomedical Laser: Technology and Clinical Applications

by Leon Goldman

The laser's range of application is extraordinary. Arthur Schawlow says, "What instrument can shuck a bucket of oysters, correct typing errors, fuse atoms, lay a straight line for a garden bed, repair detached retinas, and drill holes in dia­ monds?"O The laser's specifically biomedical uses cover a similarly broad and interesting spectrum. In this book, I have endeavored to convey some of the fas­ cination that the laser has long held for me. It is my hope that both clinicians and researchers in the various medical and surgical specialties will find the book a use­ ful introduction. Biologists, particularly molecular biologists, should also find a great deal of relevant information herein. This volume's distinguished contributors provide admirably lucid discussions of laser principles, instrumentation, and current practice in their respective special­ ties. Safety, design, capabilities, and costs of various lasers are also reviewed. We have aimed to create a practical text that is comprehensive but not exhaustive. Our emphasis on the practical, rather than the esoteric, is dictated not only by the short history of biomedical laser use, but by the extent of the community to which this information will appeal.

Biomedical Light Microscopy

by J. James H.J Tanke

New interest in light microscopy of the last few years has not been backed up by adequate general literature. This book intends to fill the gap between specialized texts on detailed topics and general introductory booklets, mostly dealing with the use of the conventional light microscope only. In this short textbook both new developments in microscopy and basic facts of image formation will be treated, including often neglected topics such as axial resolving power, lens construction, photomicrography and correct use of phase-en interference contrast systems. Theoretical background will be dealt with as far as necessary for a well-considered application of these techniques enabling a deliberate choice for the approach of a certain problem. Over 150 illustrations (photomicrographs and diagrams) complete the information on microscopy of the nineties in the biomedical field, intended for scientists, doctors, technicians and research students. Many drawings have been contributed by the illustrator R. Kreuger; the photographic work has been executed by J. Peeterse. Secretarial assistance in preparing the manuscript was given by Ms T. M. S. Pierik. Dr M. J. Pearson has corrected the English of the final text.

Biomedical Microsystems

by Ellis Meng

Poised to dramatically impact human health, biomedical microsystems (bioMEMS) technologies incorporate various aspects from materials science, biology, chemistry, physics, medicine, and engineering. Reflecting the highly interdisciplinary nature of this area, Biomedical Microsystems covers the fundamentals of miniaturization, biomaterials, microfab

Biomedical Modeling and Simulation on a PC: A Workbench for Physiology and Biomedical Engineering (Advances in Simulation #6)

by Rogier P. Van Wijk Van Brievingh Xun Shen Dietmar P. F. Möller

I have long had an interest in the life sciences, but have had few opportunities to indulge that interest in my professional activities. It has only been through simulation that those opportunities have arisen. Some of my most enjoyable classes were those I taught to students in the life sciences, where I attempted to show them the value of simulation to their discipline. That there is such a value cannot be questioned. Whether you are interested in population ecology, phar­ macokinetics, the cardiovascular system, or cell interaction, simulation can play a vital role in explaining the underlying processes and in enhancing our understanding of these processes. This book comprises an excellent collection of contributions, and clearly demonstrates the value of simulation in the particular areas of physiology and bioengineering. My main frustration when teaching these classes to people with little or no computer background was the lack of suitable simulation software. This di­ rectly inspired my own attempts at producing software usable by the computer novice. It is especially nice that software is available that enables readers to experience the examples in this book for themselves. I would like to congratulate and thank the editors, Rogier P. van Wijk van Brievingh and Dietmar P. P. Moller, for all of their excellent efforts. They should be proud of their achievement. This is the sixth volume in the Advances in Simulation series, and other volumes are in preparation.

Refine Search

Showing 11,251 through 11,275 of 100,000 results