Browse Results

Showing 11,376 through 11,400 of 100,000 results

Biometrie: Das Konstruktionsprinzip des Kniegelenks, des Hüftgelenks, der Beinlänge und der Körpergröße

by Alfred Menschik

Die Biometrie ist eine neue Arbeitsmethode zur Aufklärung der Ursachen des Phänomens der reproduzierbaren Bewegung in der Biologie. Die Arbeitsweise der Biometrie macht es möglich, aus dem Längenverhältnis der Kreuzbänder des Kniegelenkes und der konkreten Längenangabe des hinteren Kreuzbandes das Kniesteuersystem a priori räumlich zu entwickeln, die Beinlänge und die dazugehörende Körpergröße zu bestimmen und das Hüftgelenk aus dem Kniesteuersystem abzuleiten. Die Erkenntnis, daß die unbekannten biologischen Bewegungssysteme selbstverwirklichte biometrische kräftefreie Gesetzlichkeiten verkörpern, ist richtungsweisend für alle Disziplinen, die sich mit dem Lebendigen beschäftigen.

Biometry: Technology, Trends and Applications

by Jorge De J. Lozoya-Santos Ricardo Zavala-Yoé Luz María Alonso-Valerdi Ruben Morales-Menendez Belinda Carrión Pedro Ponce Cruz Hugo G. Gonzalez-Hernandez Ricardo A. Ramirez-Mendoza

Biometrics provide quantitative representations of human features, physiological and behavioral. This book is a compilation of biometric technologies developed by various research groups in Tecnologico de Monterrey, Mexico. It provides a summary of biometric systems as a whole, explaining the principles behind physiological and behavioral biometrics and exploring different types of commercial and experimental technologies and current and future applications in the fields of security, military, criminology, healthcare education, business, and marketing. Examples of biometric systems using brain signals or electroencephalography (EEG) are given. Mobile and home EEG use in children’s natural environments is covered. At the same time, some examples focus on the relevance of such technology in monitoring epileptic encephalopathies in children. Using reliable physiological signal acquisition techniques, functional Human Machine Interfaces (HMI) and Brain-Computer Interfaces (BCI) become possible. This is the case of an HMI used for assistive navigation systems, controlled via voice commands, head, and eye movements. A detailed description of the BCI framework is presented, and applications of user-centered BCIs, oriented towards rehabilitation, human performance, and treatment monitoring are explored. Massive data acquisition also plays an essential role in the evolution of biometric systems. Machine learning, deep learning, and Artificial Intelligence (AI) are crucial allies here. They allow the construction of models that can aid in early diagnosis, seizure detection, and data-centered medical decisions. Such techniques will eventually lead to a more concise understanding of humans.

Biometry: Technology, Trends and Applications

by Ricardo A. Ramirez-Mendoza, Jorge de J. Lozoya-Santos, Ricardo Zavala-Yoé, Luz María Alonso-Valerdi, Ruben Morales-Menendez, Belinda Carrión, Pedro Ponce Cruz and Hugo G. Gonzalez-Hernandez

Biometrics provide quantitative representations of human features, physiological and behavioral. This book is a compilation of biometric technologies developed by various research groups in Tecnologico de Monterrey, Mexico. It provides a summary of biometric systems as a whole, explaining the principles behind physiological and behavioral biometrics and exploring different types of commercial and experimental technologies and current and future applications in the fields of security, military, criminology, healthcare education, business, and marketing. Examples of biometric systems using brain signals or electroencephalography (EEG) are given. Mobile and home EEG use in children’s natural environments is covered. At the same time, some examples focus on the relevance of such technology in monitoring epileptic encephalopathies in children. Using reliable physiological signal acquisition techniques, functional Human Machine Interfaces (HMI) and Brain-Computer Interfaces (BCI) become possible. This is the case of an HMI used for assistive navigation systems, controlled via voice commands, head, and eye movements. A detailed description of the BCI framework is presented, and applications of user-centered BCIs, oriented towards rehabilitation, human performance, and treatment monitoring are explored. Massive data acquisition also plays an essential role in the evolution of biometric systems. Machine learning, deep learning, and Artificial Intelligence (AI) are crucial allies here. They allow the construction of models that can aid in early diagnosis, seizure detection, and data-centered medical decisions. Such techniques will eventually lead to a more concise understanding of humans.

Biomicroscopy of the Peripheral Fundus: An Atlas and Textbook

by Georg Eisner

It gives me particular pleasure to write the foreword to this book; this is largely due to the fact that I have devoted a substantial part of my life to the improve­ ment of the methods used in ophthalmic research. Rarely has one of my students taken the opportunity of dealing systematically with the possibilities of these methods. Dr. Eisner is, however, one of these exceptions. First, he has substantially improved the indentation contact glass; secondly, he has, with untiring enthusiasm, made a systematic collection of the normal and pathologic findings, which, with the help of the indentation contact glass and the slit lamp, can be observed in the outermost periphery of the fundus and the ciliary body. He has compared them to findings obtained with slight magnification in autopsy eyes and to histological sections. Owing to a fortunate circumstance, W. Hess, who is both an excellent draughts man and a master of the special examination technique, was able to reproduce the visual phenomena faithfully. The reader who tries to interpret these illustrations spatially will discover that this was often not easy. It is a process which requires a certain effort of imagi­ nation of space, but which is very rewarding. Dr. Eisner's monograph is an introduction to a little-known branch of biomicroscopy which broadens our means of diagnosis and promises further interesting aspects for the future. I wish him well-earned success.

Biomimetic Architectures by Plasma Processing: Fabrication and Applications

by Surojit Chattopadhyay

Plasma-processed biomimetic structures are an extremely focused and small subset of biomimetics. Although other methods can also be adopted, experimental synthesis of biomimetic structures mainly focuses on plasma processing. This book deals with the theoretical description of photonic structures available in nature, and the physics and application

Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization

by Fatma N. Kök Ahu Arslan Yildiz Fatih Inci

This book compiles the fundamentals, applications and viable product strategies of biomimetic lipid membranes into a single, comprehensive source. It broadens its perspective to interdisciplinary realms incorporating medicine, biology, physics, chemistry, materials science, as well as engineering and pharmacy at large. The book guides readers from membrane structure and models to biophysical chemistry and functionalization of membrane surfaces. It then takes the reader through a myriad of surface-sensitive techniques before delving into cutting-edge applications that could help inspire new research directions. With more than half the world's drugs and various toxins targeting these crucial structures, the book addresses a topic of major importance in the field of medicine, particularly biosensor design, diagnostic tool development, vaccine formulation, micro/nano-array systems, and drug screening/development.Provides fundamental knowledge on biomimetic lipid membranes;Addresses some of biomimetic membrane types, preparation methods, properties and characterization techniques;Explains state-of-art technological developments that incorporate microfluidic systems, array technologies, lab-on-a-chip-tools, biosensing, and bioprinting techniques;Describes the integration of biomimetic membranes with current top-notch tools and platforms;Examines applications in medicine, pharmaceutical industry, and environmental monitoring.

Biomimetic Medical Materials: From Nanotechnology to 3D Bioprinting (Advances in Experimental Medicine and Biology #1064)

by Insup Noh

This volume outlines the current status in the field of biomimetic medical materials and illustrates research into their applications in tissue engineering. The book is divided into six parts, focusing on nano biomaterials, stem cells, tissue engineering, 3D printing, immune responses and intellectual property. Each chapter has its own introduction and outlines current research trends in a variety of applications of biomimetic medical materials. The biomimetic medical materials that are covered include functional hydrogels, nanoparticles for drug delivery and medicine, the 3D bioprinting of biomaterials, sensor materials, stem cell interactions with biomaterials, immune responses to biomaterials, biodegradable hard scaffolds for tissue engineering, as well as other important topics, like intellectual property. Each chapter is written by a team of experts. This volume attempts to introduce the biomimetic properties of biomedical materials within the context of our current understanding of the nanotechnology of nanoparticles and fibres and the macroscopic aspects of 3D bioprinting.

Biomimetic Membranes for Sensor and Separation Applications (Biological and Medical Physics, Biomedical Engineering)

by Claus Hélix-Nielsen

This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed. Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.

Biomimetic Microengineering

by Hyun Jung Kim

This book will examine the relevant biological subjects involved in biomimetic microengineering as well as the design and implementation methods of such engineered microdevices. Physiological topics covered include regeneration of complex responses of our body on a cellular, tissue, organ, and inter-organ level. Technological concepts in cell and tissue engineering, stem cell biology, microbiology, biomechanics, materials science, micro- and nanotechnology, and synthetic biology are highlighted to increase understanding of the transdisciplinary methods used to create the more complex, robust biomimetic engineered models. The effectiveness of the new bioinspired microphysiological systems as replacements for existing in vitro or in vivo models is explained through sections that include the protocols to reconstitute three-dimensional (3D) structures, recapitulate physiological functions, and emulate the pathophysiology of human diseases. This book will also discuss how researchers can discover bridge technologies for disease modeling and personalized precision medicine. Features Focuses on cutting edge technologies that enable manipulation of living systems in a spatiotemporal manner. Incorporates research on reverse engineering of comples microenvironmental factors in human diseases. Highlights technologies related to patient-specific personalized medicine and their potential uses. Written by chapter authors who are highly respected researchers in science and engineering. Includes extensive references at the end of each chapter to enhance further study. Hyun Jung Kim is an Assistant Professor in the Department of Biomedical Engineering at The University of Texas at Austin. After receiving hois Ph.D. degree at Yonsei University in the Republic of Korea, he did extensive postdctoral research at both the University of Chicago and the Wyss Institute at Harvard University. These efforts resulted in cutting-edge breakthroughs in synthetic microbial community research and organomimetic human Gut-on-a-Chip microsystem. His research on Gut-on-a-Chip technology leads to the creation of a microfluidic device that mimics the physiology and pathology of the living human intestine. Since 2015, he has explored novel human host-microbiome ecosystems to discover the disease mechanism and new therapeutics in inflammatory bowel disease and colorectal cancers at UT Austin. In collaboration with clinicians, his lab is currently developing disease-oriented, patient-specific models for the advancement in pharmaceutical and clinical fields.

Biomimetic Microengineering

by Hyun Jung Kim

This book will examine the relevant biological subjects involved in biomimetic microengineering as well as the design and implementation methods of such engineered microdevices. Physiological topics covered include regeneration of complex responses of our body on a cellular, tissue, organ, and inter-organ level. Technological concepts in cell and tissue engineering, stem cell biology, microbiology, biomechanics, materials science, micro- and nanotechnology, and synthetic biology are highlighted to increase understanding of the transdisciplinary methods used to create the more complex, robust biomimetic engineered models. The effectiveness of the new bioinspired microphysiological systems as replacements for existing in vitro or in vivo models is explained through sections that include the protocols to reconstitute three-dimensional (3D) structures, recapitulate physiological functions, and emulate the pathophysiology of human diseases. This book will also discuss how researchers can discover bridge technologies for disease modeling and personalized precision medicine. Features Focuses on cutting edge technologies that enable manipulation of living systems in a spatiotemporal manner. Incorporates research on reverse engineering of comples microenvironmental factors in human diseases. Highlights technologies related to patient-specific personalized medicine and their potential uses. Written by chapter authors who are highly respected researchers in science and engineering. Includes extensive references at the end of each chapter to enhance further study. Hyun Jung Kim is an Assistant Professor in the Department of Biomedical Engineering at The University of Texas at Austin. After receiving hois Ph.D. degree at Yonsei University in the Republic of Korea, he did extensive postdctoral research at both the University of Chicago and the Wyss Institute at Harvard University. These efforts resulted in cutting-edge breakthroughs in synthetic microbial community research and organomimetic human Gut-on-a-Chip microsystem. His research on Gut-on-a-Chip technology leads to the creation of a microfluidic device that mimics the physiology and pathology of the living human intestine. Since 2015, he has explored novel human host-microbiome ecosystems to discover the disease mechanism and new therapeutics in inflammatory bowel disease and colorectal cancers at UT Austin. In collaboration with clinicians, his lab is currently developing disease-oriented, patient-specific models for the advancement in pharmaceutical and clinical fields.

Biomimetic Microsensors Inspired by Marine Life

by Ajay Giri Kottapalli Mohsen Asadnia Jianmin Miao Michael S. Triantafyllou

This book narrates the development of various biomimetic microelectromechanical systems (MEMS) sensors, such as pressure, flow, acceleration, chemical, and tactile sensors, that are inspired by sensing phenomena that exist in marine life. The research described in this book is multi-faceted and combines the expertise and understanding from diverse fields, including biomimetics, microfabrication, sensor engineering, MEMS design, nanotechnology, and material science. A series of chapters examine the design and fabrication of MEMS sensors that function on piezoresistive, piezoelectric, strain gauge, and chemical sensing principles. By translating nature-based engineering solutions to artificial man-made technology, we can find innovative solutions to critical problems.

Biomimetics: Nature-Based Innovation (Biomimetics Series)

by Yoseph Bar-Cohen

Mimicking nature - from science fiction to engineering realityHumans have always looked to nature's inventions as a source of inspiration. The observation of flying birds and insects leads to innovations in aeronautics. Collision avoidance sensors mimic the whiskers of rodents. Optimization algorithms are based on survival of the fittest, the seed-

Biomimetics: Biologically Inspired Technologies

by Yoseph Bar-Cohen

Nature is the world's foremost designer. With billions of years of experience and boasting the most extensive laboratory available, it conducts research in every branch of engineering and science. Nature's designs and capabilities have always inspired technology, from the use of tongs and tweezers to genetic algorithms and autonomous legged robots.

Biomimetics: Nature-Based Innovation (Biomimetics Series)

by Yoseph Bar-Cohen

Mimicking nature - from science fiction to engineering realityHumans have always looked to nature's inventions as a source of inspiration. The observation of flying birds and insects leads to innovations in aeronautics. Collision avoidance sensors mimic the whiskers of rodents. Optimization algorithms are based on survival of the fittest, the seed-

Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology (Biological and Medical Physics, Biomedical Engineering)

by Bharat Bhushan

This book presents an overview of the general field of biomimetics - lessons from nature. It presents various examples of biomimetics, including roughness-induced superomniphobic surfaces which provide functionality of commercial interest. The major focus in the book is on lotus effect, rose petal effect, shark skin effect, and gecko adhesion. For each example, the book first presents characterization of an object to understand how a natural object provides functionality, followed by modeling and then fabrication of structures in the lab using nature’s route to verify one’s understanding of nature and provide guidance for development of optimum structures. Once it is understood how nature does it, examples of fabrication of optimum structures using smart materials and fabrication techniques, are presented. Examples of nature inspired objects are also presented throughout.

Biomimetics: Connecting Ecology and Engineering by Informatics

by Akihiro Miyauchi Masatsugu Shimomura

Biomimetics is based on nature, while technology is based on economy. One of the solutions for a sustainable society is to learn a grand design of technology from nature. Methods that mimic nature have a long history in various fields. Now is the time to use biomimetics as a starting technology design. Biomimetics is gaining a great deal of attention not only in materials and mechanical engineering but also in the ecosystem that comprises city planning, agriculture, and forestry. Informatics is being added to biomimetics to support its diversity and cross-disciplinarity. This book will inspire the undergraduate and graduate students, researchers, and general readers who aim to develop technology for sustainability. Edited by Profs Akihiro Miyauchi and Masatsugu Shimomura, two prominent nanotechnology researchers, the book is their second volume on biomimetics. The first volume, Industrial Biomimetics, also published by Jenny Stanford Publishing, focused on the engineering aspect of biomimetics.

Biomimetics: Connecting Ecology and Engineering by Informatics

by Akihiro Miyauchi Masatsugu Shimomura

Biomimetics is based on nature, while technology is based on economy. One of the solutions for a sustainable society is to learn a grand design of technology from nature. Methods that mimic nature have a long history in various fields. Now is the time to use biomimetics as a starting technology design. Biomimetics is gaining a great deal of attention not only in materials and mechanical engineering but also in the ecosystem that comprises city planning, agriculture, and forestry. Informatics is being added to biomimetics to support its diversity and cross-disciplinarity. This book will inspire the undergraduate and graduate students, researchers, and general readers who aim to develop technology for sustainability. Edited by Profs Akihiro Miyauchi and Masatsugu Shimomura, two prominent nanotechnology researchers, the book is their second volume on biomimetics. The first volume, Industrial Biomimetics, also published by Jenny Stanford Publishing, focused on the engineering aspect of biomimetics.

Biomimetics and Bionic Applications with Clinical Applications (Series in BioEngineering)

by Meir Israelowitz Birgit Weyand Herbert P. von Schroeder Peter Vogt Matthias Reuter Kerstin Reimers

This book presents current trends and developments in the rapidly growing field of biomimetics. It takes an application-oriented approach to reflect the interdisciplinary nature of this field: Experts, from academic as well as professional backgrounds, contribute to this book by describing and presenting state-of-the-art experiments and practical developments. A strong emphasis is put on the various possibility to apply biomimetics in tissue engineering, regenerative surgery, neurosurgery for clinical applications.

Biomimetics -- Materials, Structures and Processes: Examples, Ideas and Case Studies (Biological and Medical Physics, Biomedical Engineering)

by Christian Hellmich Heinz-Bodo Schmiedmayer Herbert Stachelberger Ille C. Gebeshuber Petra Gruber Dietmar Bruckner

The book presents an outline of current activities in the field of biomimetics and integrates a variety of applications comprising biophysics, surface sciences, architecture and medicine. Biomimetics as innovation method is characterised by interdisciplinary information transfer from the life sciences to technical application fields aiming at increased performance, functionality and energy efficiency. The contributions of the book relate to the research areas: - Materials and structures in nanotechnology and biomaterials - Biomimetic approaches to develop new forms, construction principles and design methods in architecture - Information and dynamics in automation, neuroinformatics and biomechanics Readers will be informed about the latest research approaches and results in biomimetics with examples ranging from bionic nano-membranes to function-targeted design of tribological surfaces and the translation of natural auditory coding strategies.

Biomimicked Biomaterials: Advances in Tissue Engineering and Regenerative Medicine (Advances in Experimental Medicine and Biology #1250)

by Heung Jae Chun Rui L. Reis Antonella Motta Gilson Khang

This book is the second of two volumes that together offer a comprehensive account of cutting-edge advances in the development of biomaterials for use within tissue engineering and regenerative medicine. In this volume, which is devoted to biomimetic biomaterials, the opening section discusses bone regeneration by means of duck’s feet-derived collagen scaffold and the use of decellularized extracellular matrices. The role of various novel biomimetic hydrogels in regenerative medicine is then considered in detail. The third section focuses on the control of stem cell fate by biomimetic biomaterials, covering exosome-integrated biomaterials for bone regeneration, cellular responses to materials for biomedical engineering, and the regulation of stem cell functions by micropatterned structures. Finally, the use of nano-intelligent biocomposites in regenerative medicine is addressed, with discussion of, for example, recent advances in biphasic calcium phosphate bioceramics and blood-contacting polymeric biomaterials. The authors are recognized experts in the interdisciplinary field of regenerative medicine and the book will be of value for all with an interest in regenerative medicine based on biomaterials.

Biomineralization: From Molecular and Nano-structural Analyses to Environmental Science

by Hiromichi Nagasawa Toshihiro Kogure Kazuyoshi Endo

This open access book is the proceedings of the 14th International Symposium on Biomineralization (BIOMIN XIV) held in 2017 at Tsukuba. Over the past 45 years, biomineralization research has unveiled details of the characteristics of the nano-structure of various biominerals; the formation mechanism of this nano-structure, including the initial stage of crystallization; and the function of organic matrices in biominerals, and this knowledge has been applied to dental, medical, pharmaceutical, materials, agricultural and environmental sciences and paleontology. As such, biomineralization is an important interdisciplinary research area, and further advances are expected in both fundamental and applied research.

Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology

by Bernhard Rupp

Synthesizing over thirty years of advances into a comprehensive textbook, Biomolecular Crystallography describes the fundamentals, practices, and applications of protein crystallography. Deftly illustrated in full-color by the author, the text describes mathematical and physical concepts in accessible and accurate language. It distills key co

Refine Search

Showing 11,376 through 11,400 of 100,000 results