Browse Results

Showing 15,376 through 15,400 of 100,000 results

Cell Biology and Translational Medicine, Volume 7: Stem Cells and Therapy: Emerging Approaches (Advances in Experimental Medicine and Biology #1237)

by Kursad Turksen

Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions.This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature’s longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the seventh volume of a continuing series.

Cell Biology and Translational Medicine, Volume 8: Stem Cells in Regenerative Medicine (Advances in Experimental Medicine and Biology #1247)

by Kursad Turksen

Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions.This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature’s longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the eight volume of a continuing series.

Cell Biology and Translational Medicine, Volume 9: Stem Cell-Based Therapeutic Approaches in Disease (Advances in Experimental Medicine and Biology #1288)

by Kursad Turksen

Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions.This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature’s longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the ninth volume of a continuing series.

Cell Biology E-Book

by Thomas D. Pollard William C. Earnshaw Jennifer Lippincott-Schwartz

A masterful introduction to the cell biology that you need to know! This critically acclaimed textbook offers you a modern and unique approach to the study of cell biology. It emphasizes that cellular structure, function, and dysfunction ultimately result from specific macromolecular interactions. You'll progress from an explanation of the "hardware" of molecules and cells to an understanding of how these structures function in the organism in both healthy and diseased states. The exquisite art program helps you to better visualize molecular structures.Covers essential concepts in a more efficient, reader-friendly manner than most other texts on this subject. Makes cell biology easier to understand by demonstrating how cellular structure, function, and dysfunction result from specific macromole¬cular interactions. Progresses logically from an explanation of the "hardware" of molecules and cells to an understanding of how these structures function in the organism in both healthy and diseased states. Helps you to visualize molecular structures and functions with over 1500 remarkable full-color illustrations that present physical structures to scale. Explains how molecular and cellular structures evolved in different organisms. Shows how molecular changes lead to the development of diseases through numerous Clinical Examples throughout. Includes STUDENT CONSULT access at no additional charge, enabling you to consult the textbook online, anywhere you go · perform quick searches · add your own notes and bookmarks · follow Integration Links to related bonus content from other STUDENT CONSULT titles—to help you see the connections between diverse disciplines · test your knowledge with multiple-choice review questions · and more!New keystone chapter on the origin and evolution of life on earth probably the best explanation of evolution for cell biologists available! Spectacular new artwork by gifted artist Graham Johnson of the Scripps Research Institute in San Diego. 200 new and 500 revised figures bring his keen insight to Cell Biology illustration and further aid the reader’s understanding.New chapters and sections on the most dynamic areas of cell biology - Organelles and membrane traffic by Jennifer Lippincott-Schwartz; RNA processing (including RNAi) by David Tollervey., updates on stem cells and DNA Repair.,More readable than ever. Improved organization and an accessible new design increase the focus on understanding concepts and mechanisms. New guide to figures featuring specific organisms and specialized cells paired with a list of all of the figures showing these organisms. Permits easy review of cellular and molecular mechanisms.New glossary with one-stop definitions of over 1000 of the most important terms in cell biology.

Cell Biology E-Book: With Student Consult Access

by Thomas D. Pollard William C. Earnshaw Jennifer Lippincott-Schwartz Graham Johnson

The much-anticipated 3rd edition of Cell Biology delivers comprehensive, clearly written, and richly illustrated content to today’s students, all in a user-friendly format. Relevant to both research and clinical practice, this rich resource covers key principles of cellular function and uses them to explain how molecular defects lead to cellular dysfunction and cause human disease. Concise text and visually amazing graphics simplify complex information and help readers make the most of their study time. Clearly written format incorporates rich illustrations, diagrams, and charts.Uses real examples to illustrate key cell biology concepts.Includes beneficial cell physiology coverage.Clinically oriented text relates cell biology to pathophysiology and medicine.Takes a mechanistic approach to molecular processes.Major new didactic chapter flow leads with the latest on genome organization, gene expression and RNA processing.Boasts exciting new content including the evolutionary origin of eukaryotes, super resolution fluorescence microscopy, cryo-electron microscopy, gene editing by CRISPR/Cas9, contributions of high throughput DNA sequencing to understand genome organization and gene expression, microRNAs, IncRNAs, membrane-shaping proteins, organelle-organelle contact sites, microbiota, autophagy, ERAD, motor protein mechanisms, stem cells, and cell cycle regulation. Features specially expanded coverage of genome sequencing and regulation, endocytosis, cancer genomics, the cytoskeleton, DNA damage response, necroptosis, and RNA processing. Includes hundreds of new and updated diagrams and micrographs, plus fifty new protein and RNA structures to explain molecular mechanisms in unprecedented detail.

Cell Biology E-Book: Cell Biology E-Book

by Thomas D. Pollard William C. Earnshaw Jennifer Lippincott-Schwartz Graham Johnson

Reader-friendly Cell Biology, 4th Edition, provides a concise but comprehensive foundation for students entering research or health care career paths. Award winning illustrations help readers quickly grasp general principles. The authors have thoroughly updated this popular text to provide readers with the current understanding of the principles of normal cellular function along with examples of how molecular defects predispose to human disease. Major new themes in the 4th edition include the roles of intrinsically disordered polypeptides and phase separation in cellular functions, the influence of new molecular structures on understanding mechanisms, and the impact of exciting new methods—from single cell RNA sequencing to second generation super resolution fluorescence microscopy—on advancing our understanding. - Clear, readable explanations provide a concise story about how cells function at the molecular level. - An intuitive chapter flow starts with genome organization, gene expression, and RNA processing as a foundation for understanding every aspect of cellular function and physiology. - Brings cellular biology to life for students interested in medical science by explaining how mutations in genes can compromise virtually every cellular system and predispose to human disease. Knowledge of cell biology has led to new treatments for cancer, heart failure, cystic fibrosis, and many other diseases. - Unique illustrations with realistic proportions and relationships explain every cellular process including the assembly of SARS CoV-2, the structures attaching mitotic chromosomes to microtubules, the mechanism of DNA replication and how pumps, carriers and channels orchestrate physiological processes from synaptic transmission to cellular volume regulation. - Covers exciting breakthroughs such as SMC motor proteins actively organizing chromosomal DNA, TOR kinases regulating metabolism, new types of immunotherapy for cancer treatment, mechanisms regulating fast axonal transport and their relation to neurodegenerative diseases, how completion of DNA replication sets the time for cells to enter mitosis, how a cascade of signals specifies the site of cell division, and newly understood pathways of normal and pathological cell death.

Cell Biology of Herpes Viruses (Advances in Anatomy, Embryology and Cell Biology #223)

by Klaus Osterrieder

Herpes viruses are widely distributed in nature, causing disease in organisms as diverse as bivalves and primates, including humans. Each virus appears to have established a long-standing relationship with its host, and the viruses have the ability to manipulate and control the metabolism of host cells, as well as innate and adaptive antiviral immune responses. Herpes viruses maintain themselves within hosts in a latent state resulting in virus persistence for years – usually for the life span of the hosts. Herpes viruses comprise a large number of pathogens with diverse cellular targets and biological consequences of infection. What they have in common is their structure and the fact that they establish a dormant (latent) infection in their hosts that usually persists for life. The reviews here will highlight the general principles of herpes virus infection, with equal attention to overall principle and important difference. Also, the cell type- and life-style dependent differences in the establishment and maintenance of virus persistence will be covered.

Cell Biology of Plant Nematode Parasitism (Plant Cell Monographs #15)

by R. Howard Berg Chris Taylor

Plant-parasitic nematodes are among the most destructive plant pathogens, causing enormous losses to agronomic crops worldwide. This book provides an up-to-date review of research related to two of the most important nematode pests, root-knot and cyst nematodes. Chapters cover early plant-nematode interactions, identification of nematode proteins important in the establishment of nematode feeding sites, and classification of biochemical and signaling pathways significant in the development of specialized feeding sites in the host. The cellular and subcellular structures essential for the parasitic interaction are examined by light and electron microscopy. Modern techniques of gene expression analyses and genomic sequencing are poised to provide an even greater wealth of information to researchers, enabling them to develop and examine natural and manmade mechanisms of resistance to this important plant pest.

Cell Biology of the Axon (Results and Problems in Cell Differentiation #48)

by Edward Koenig

Recent years have witnessed striking advances in research on axons at a cellular level that substantially impact our current understanding of axonal biology. Newer findings and their ramifications are critically reviewed in the 16 chapters of this volume by authors highly qualified by virtue of their scientific contributions to research areas they know and write about. Five basic areas (I to V) germane to axonal biology are highlighted, beginning with (I) signaling interactions mediating myelination, and differentiation of axonal membrane domains; (IIa) issues surrounding organization and transport dynamics of neurofilaments in axons, (IIb) mechanisms regulating microtubule organization and dynamics, misregulation of which causes axonal degeneration, and (IIc) the roles actin binding proteins play in regulating organization and functions of the actin filament system in mature and growing axons; (IIIa) myosin motor proteins and cargoes intrinsic to the axon compartment, (IIIb) mitochondrial transport motors, and imperatives governing transport dynamics and directional delivery, (IIIc) mechanisms mediating retrograde signaling associated with NGF’s role in trophic-dependent neuronal survival, and (IIId) potential for impaired subcellular targeting of a -synuclein as a mechanism for accumulation of Lewy body inclusions in synucleinopathies; (IVa) occurrence and organization of discrete ribosome-containing domains in axons, (IVb) endogenous mRNAs, classes of proteins translated locally, and RNP trafficking in axons, (IVc) importance of locally synthesized nuclear encoded mitochondrial proteins for maintenance, function and survival of axons, (IVd) occurrence of RNA trafficking from glial cells to axons, and significance glial RNA transcripts may play in expression in axons and axon terminals, (IVe) RNA trafficking and localization of RNA transcripts in axonal growth cones, and signaling pathways that modulate local protein synthesis for directional elongation, and (IVf) genetic and molecular defects underlying spinal muscular atrophy, and roles that SMN gene product plays as a molecular chaperone in mRNA transport and translation; (Va) injury-induced local synthesis of a protein forming a retrograde signaling complex in axons to stimulate regeneration, and (Vb) endogenous and exogenous factors that condition axonal regenerative capacity in PNS and CNS, including injury-induced activation of specific genes governing regeneration. Emergent complexities revealed in this volume compel a major revision in the traditional conceptual model of the axon’s intrinsic makeup and capacities.

Cell Biology of the Ovary: Stem Cells, Development, Cancer, and Clinical Aspects

by Hidetaka Katabuchi Takashi Ohba Takeshi Motohara

This unique compilation focuses on a very curious organ, the ovary. There are still many unknown facts about the origins of ovarian tissue and ovarian cancer, and each chapter describes in detail the latest insights into the ovary from basic to clinical aspects. Expert authors reveal the most recent findings on ovariogenesis and ovarian carcinogenesis by shedding light on stem cell biology for the ovarian surface epithelial cells or primordial germ cells. Readers will greatly increase their understanding of the relevance of the cells that constitute the ovary, which is of vast significance in comprehending the occurrence mechanism of ovarian tissue and ovarian cancer. In this way the book covers a wide range of fields concerned with the ovary. This work benefits not only gynecologists and obstetricians, but also basic researchers in the field of stem cell biology and all clinicians who are involved in the management of fertility preservation or ovarian cancer.

Cell Boundaries: How Membranes and Their Proteins Work

by Stephen H White Gunnar von Heijne Donald M Engelman

The central themes of Cell Boundaries concern the structural and organizational principles underlying cell membranes, and how these principles enable function. By building a biological and biophysical foundation for understanding the organization of lipids in bilayers and the folding, assembly, stability, and function of membrane proteins, the book aims to broaden the knowledge of bioscience students to include the basic physics and physical chemistry that inform us about membranes. In doing so, it is hoped that physics students will find familiar territory that will lead them to an interest in biology. Our progress toward understanding membranes and membrane proteins depends strongly upon the concerted use of both biology and physics. It is important for students to know not only what we know, but how we have come to know it, so Cell Boundaries endeavours to bring out the history behind the central discoveries, especially in the early chapters, where the foundation is laid for later chapters. Science is far more interesting if, as students, we can appreciate and share in the adventures—and misadventures—of discovering new scientific knowledge. Cell Boundaries was written with advanced undergraduates and beginning graduate students in the biological and physical sciences in mind, though this textbook will likely have appeal to researchers and other academics as well. Highlights the history of important central discoveries Early chapters lay the foundation for later chapters to build on, so knowledge is amassed High-quality line diagrams illustrate key concepts and illuminate molecular mechanisms Box features and spreads expand on topics in main text, including histories of discoveries, special techniques, and applications

Cell Boundaries: How Membranes and Their Proteins Work

by Stephen H White Gunnar von Heijne Donald M Engelman

The central themes of Cell Boundaries concern the structural and organizational principles underlying cell membranes, and how these principles enable function. By building a biological and biophysical foundation for understanding the organization of lipids in bilayers and the folding, assembly, stability, and function of membrane proteins, the book aims to broaden the knowledge of bioscience students to include the basic physics and physical chemistry that inform us about membranes. In doing so, it is hoped that physics students will find familiar territory that will lead them to an interest in biology. Our progress toward understanding membranes and membrane proteins depends strongly upon the concerted use of both biology and physics. It is important for students to know not only what we know, but how we have come to know it, so Cell Boundaries endeavours to bring out the history behind the central discoveries, especially in the early chapters, where the foundation is laid for later chapters. Science is far more interesting if, as students, we can appreciate and share in the adventures—and misadventures—of discovering new scientific knowledge. Cell Boundaries was written with advanced undergraduates and beginning graduate students in the biological and physical sciences in mind, though this textbook will likely have appeal to researchers and other academics as well. Highlights the history of important central discoveries Early chapters lay the foundation for later chapters to build on, so knowledge is amassed High-quality line diagrams illustrate key concepts and illuminate molecular mechanisms Box features and spreads expand on topics in main text, including histories of discoveries, special techniques, and applications

Cell Calcium Metabolism: Physiology, Biochemistry, Pharmacology, and Clinical Implications (Gwumc Department of Biochemistry and Molecular Biology Annual Spring Symposia)

by Gary Fiskum

A widespread appreciation for the role that calcium plays in cell physiology and patho­ physiology has now been achieved due to the pioneering studies of many of the scientists who attended the VIIth International Spring Symposium on Health Sciences at George Washington University in Washington, D. C. The participants in this unique meeting rep­ resented diverse fields of basic and clinical research, such as molecular physiology, oncology, molecular genetics, cardiology, bioenergetics, pathology, and endocrinology. The content of the proceedings of the symposium represents work in these and other areas of biomedical research. Organization of the book is aimed at striking a balance between the biochemistry 2 and physiology of normal cell Ca + metabolism and the pathological consequences of al­ 2 terations in cell Ca + homeostasis. The first section of the book is devoted to the transport mechanisms responsible for 2 2 regulating intracellular Ca + and the pharmacological modalities for controlling cell Ca + . Particular attention is given to the molecular basis for plasma membrane transport activities, 2 2 including the ATP-driven Ca + pump, the Na + -Ca + exchange system, and voltage sensitive 2 Ca + channels. The second section covers the exciting relationships between phosphoinositide metab­ 2 olism, signal transduction, and cell Ca + metabolism. This section begins with an eloquent overview by Professor Michael Berridge, who was the keynote speaker at the symposium and the recipient of the scientific merit award.

Cell Communication in Nervous and Immune System (Results and Problems in Cell Differentiation #43)

by Eckart D. Gundelfinger Constanze Seidenbecher Burkhart Schraven

This collection of reviews contains contributions by internationally recognized immunologists and molecular and cellular neurobiologists. Uniquely, it puts side by side cellular communication devices and signaling mechanisms in the immune and nervous systems and discusses mechanisms of interaction between the two systems, the significance of which has only recently been fully appreciated.

Cell Culture Bioprocess Engineering, Second Edition

by Wei-Shou Hu

This book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.

Cell Culture Bioprocess Engineering, Second Edition

by Wei-Shou Hu

This book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.

Cell Culture Engineering and Technology: In appreciation to Professor Mohamed Al-Rubeai (Cell Engineering #10)

by Ralf Pörtner

This contributed volume is dedicated towards the progress achieved within the last years in all areas of Cell Culture Engineering and Technology. It comprises contributions of active researchers in the field of cell culture development for the production of recombinant proteins, cell line development, cell therapy and gene therapy, with consideration of media development, process scale-up, reactor design, monitoring and control and model-assisted strategies for process design. The knowledge and expertise of the authors cover disciplines like cell biology, engineering, biotechnology and biomedical sciences. This book is conceived for graduate students, postdoctoral fellows and researchers interested in the latest developments in Cell Engineering.

Cell Culture in Pharmaceutical Research (Ernst Schering Foundation Symposium Proceedings #11)

by H. Graf N. E. Fusenig

Cell biology has made an appreciable impact on the evaluation of physiological and pathophysiological processes leading to a more detailed understanding of the signaling mechanisms by which cells communicate in vivo and in vitro and modify adaptively. By using cell culture models in addition to animal experiments we are now able to better define the overall and the selective potential of drugs. This book is designed to give information on the advantages and limitations and on new aspects and the meaning of cell culture models in pharmaceutical research.

Cell Culture in the Neurosciences (Current Topics in Neurobiology)

by Jane Bottenstein

A fundamental problem in neuroscience is the elucidation of the cellular and molecular mechanisms underlying the development and function of the nervous system. The complexity of organization, the heteroge­ neity of cell types and their interactions, and the difficulty of controlling experimental variables in intact organisms make this a formidable task. Because of the ability that it affords to analyze smaller components of the nervous system (even single cells in some cases) and to better control experimental variables, cell culture has become an increasingly valuable tool for neuroscientists. Many aspects of neural development, such as proliferation, differentiation, synaptogenesis, and myelination, occur in culture with time courses remarkably similar to those in vivo. Thus, in vitro methods often provide excellent model systems for investigating neurobiological questions. Ross Harrison described the first culture of neural tissue in 1907 and used morphological methods to analyze the cultures. Since that time the technique has been progressively modified and used to address an ever widening range of developmental questions. In recent years a con­ vergence of new or improved cell culture, biochemical, electrophysiol­ ogical, and immunological methods has occurred and been brought to bear on neurobiological questions. This volume is intended not to be comprehensive but rather to highlight some of the latest findings, with a review of previous important work as well, in which combinations of these methods are used.

Cell Culture Methods for In Vitro Toxicology

by Glyn N. Stacey Alan Doyle Margherita Ferro

Cell Culture Methods for in vitro Toxicology introduces the reader to a range of techniques involved in the use of in vitro cell culture in toxicological studies. It deals with major cell types studied in the field of toxicology and will be useful for anyone wishing to start work with animal cell cultures or to refresh their knowledge relating to in vitro cell models. Fundamental chapters deal with the general biology of cytotoxicity and cell immortalisation these are key issues for in vitro systems addressing the `3Rs' principle. Up-to-date overviews deal with the use of cells from liver, brain and intestine. In addition, biochemical analysis of cell responses, biotransformation pathways in cells and recombinant approaches to the early detection of cell stress are also covered in detail. Prominent features of in vitro technologies also include regulation, biosafety and standardisation. Dedicated chapters deal with these issues in a practical way in order to lead the reader to the right source of information. This book provides an up-to-date, informative and practical review of cell culture methods for in vitro toxicology. It will be of equal benefit to students and experienced toxicologists with little experience of in vitro cell culture.

Cell Culture Techniques (Neuromethods #145)

by Michael Aschner Lucio Costa

This volume discusses the requirements, advantages, and limitations of studying cell culture. The chapters in this book cover topics such as in vitro blood-brain barrier functional assays in human iPSC-based models; neuron-glia interactions examines with in vitro co-culture; epigenetic changes in cultures neurons and astrocytes; rat brain slices; brain punching technique; and using microRNA for in vitro neurotoxicity testing and related disorders. In Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Authoritative and cutting-edge, Cell Culture Techniques, Second Edition is a valuable resource for students and experiences researchers who are interested in learning more and making risk decisions in this evolving field.

Cell Culture Techniques (Neuromethods #56)

by Michael Aschner, Cristina Suñol and Anna Bal-Price

Societal, ethical, and cost-related issues, not to mention the need for sound scientific methods, have led to new and refined methods for the evaluation of health risks associated with neurotoxic compounds, relevant and predictive of exposure, relatively inexpensive, and ideally amenable to high throughput analysis and a reduction in animal use. Cell Culture Techniques presents thorough traditional chapters, such as those on various cell culture methods that have evolved over the years, as well as innovative approaches to neurotoxicologic testing. Accordingly, this detailed volume describes how stem cells, computational biology, and other novel powerful methods can now be applied to address the challenges of neurotoxic testing. As part of the Neuromethods series, this work provides the kind of intensive description and implementation advice that is crucial for getting optimal results in the laboratory. Practical and authoritative, Cell Culture Techniques serves both the novice and the experienced neurotoxicologist by inspiring the further development of mechanistically-driven, cost-effective, high throughput series of tests needed to meet the many contemporary challenges.

Cell Culture Techniques in Heart and Vessel Research

by H. M. Piper

In the cardiovascular sciences, an increasing demand for the use of modern methods of cell biology has developed. The use of specific cell culture models of the various tissues involved is essential for most of these novel approaches. This book meets the demand for acomprehensive and easy accessible source for cell cul- ture methods in cardiovascular research as it was not previously available. The basic methods for cultures of cardiomyocytes (embryonic and adult), endothelial cells (micro- and macrovascular), smooth muscle cells and pericytes are described in detail by an international selection of experts. Special chapters discuss the use of growth factors and attachment substrates, techniques for co-cultures, cultures on permeable filter membranes and microcarrier cultures. The methodological descriptions are sufficiently detailed for an immediate application in the laboratory. All chapters also contain a critical evaluation of alternative approaches.

Cell Culture Technology (Learning Materials in Biosciences #4)

by Cornelia Kasper Verena Charwat Antonina Lavrentieva

This textbook provides an overview on current cell culture techniques, conditions, and applications specifically focusing on human cell culture. This book is based on lectures, seminars and practical courses in stem cells, tissue engineering, regenerative medicine and 3D cell culture held at the University of Natural Resources and Life Sciences Vienna BOKU and the Gottfried Wilhelm Leibniz University Hannover, complemented by contributions from international experts, and therefore delivers in a compact and clear way important theoretical, as well as practical knowledge to advanced graduate students on cell culture techniques and the current status of research. The book is written for Master students and PhD candidates in biotechnology, tissue engineering and biomedicine working with mammalian, and specifically human cells. It will be of interest to doctoral colleges, Master- and PhD programs teaching courses in this area of research.

Refine Search

Showing 15,376 through 15,400 of 100,000 results