Browse Results

Showing 28,576 through 28,600 of 100,000 results

Crystal Structure Determination

by Werner Massa

This textbook gives a concise introduction to modern crystal structure determination, emphasising both its theoretical background and the way it is actually carried out. The theoretical sections are supported by many illustrations, and lay emphasis on a good understanding rather than rigorous mathematics. The most important data collection techniques, and the methods of data reduction, structure solution and refinement are discussed from a practical point of view. Many tips and insights help readers to recognise and avoid possible errors and traps, and to judge the quality of results. The second edition has been considerably updated, especially the chapter on experimental methods, which is now mainly concerned with modern data collection using area-detectors.

Crystal Structure Determination

by Werner Massa Robert O. Gould

This textbook gives a concise introduction to modern crystal structure determination, emphasising both its theoretical background and the way it is actually carried out. The theoretical sections are supported by many illustrations, and lay emphasis on a good understanding rather than rigorous mathematics. The most important data collection techniques, and the methods of data reduction, structure solution and refinement are discussed from a practical point of view. Many tips and insights help readers to recognise and avoid possible errors and traps, and to judge the quality of results. The second edition has been considerably updated, especially the chapter on experimental methods, which is now mainly concerned with modern data collection using area-detectors.

Crystal Structure Determination (PDF)

by Werner Massa Robert O. Gould

This textbook gives a concise introduction to modern crystal structure determination, emphasising both its theoretical background and the way it is actually carried out. The theoretical sections are supported by many illustrations, and lay emphasis on a good understanding rather than rigorous mathematics. The most important data collection techniques, and the methods of data reduction, structure solution and refinement are discussed from a practical point of view. Many tips and insights help readers to recognise and avoid possible errors and traps, and to judge the quality of results. The second edition has been considerably updated, especially the chapter on experimental methods, which is now mainly concerned with modern data collection using area-detectors.

Crystal Structure,Electronic and Optical Properties of Epitaxial Alkaline Earth Niobate Thin Films (Springer Theses)

by Dongyang Wan

This impressive thesis offers a comprehensive scientific study of the alkaline earth niobates and describes their nonlinear optical properties for the first time. It explores the crystal structure, electrical properties, optical absorption properties, hot carrier dynamics, nonlinear optical property and strain-induced metal to insulator transition of alkaline earth niobates using advanced experimental techniques. These alkaline earth niobates can have a strong plasmon resonance in the visible range due to their large carrier density, and this unique property gives rise to the emergent phenomenon of photocatalysis and nonlinear optical properties. This series of intrinsic plasmonic materials based on niobates, can be used as a photocatalyst to split water under sunlight, a novel saturable absorber in the high-power ultrashort pulsed laser system, and as a sensor in microelectromechanical systems.

Crystalizing the EU Digital Policy: An Exploration into the Digital Single Market

by Mirela Mărcuț

This book explores the intricate connection between the Single Market, characterized by the freedom of movement of goods, services, capital and labor within and across Europe, and the Digital Single Market, the virtual space that promotes freedom of movement of information and data. Both a result and catalyst of the Single Market, the Digital Single Market has become a different space from the Single Market, as the former is based on the application of information and communication technologies (ICTs), while the latter is the result of concerted actions and concessions by Member States in the European Union. The author argues that, similar to the Single Market, the Digital Single Market is an instrument, built by the influence of the Internet, which can provide a new means of socio-economic growth and development in Europe. While sharing many similar characteristics, the Single Market and the Digital Single Market diverge in important aspects, particularly with respect to policy. The research analyzes the interaction between policy actors, their influence in the European decision-making process, and their interests in order to establish a digital policy model, in comparison with market policy. Moreover, this volume considers the implementation process and the success of such initiatives under the current policy model, and puts forward policy recommendations. Ultimately, the author considers the utility of such research on digital policy, considering the current focus on migration, vulnerabilities to internal challenges (e.g., Brexit) and security threats, maintaining that the discussion of digital policies relates to an innovative vision of the European integration process and prospects for its future.

Crystalline Bacterial Cell Surface Layers

by Uwe B. Sleytr Paul Messner Dietmar Pum Margit Sara

Crystalline surface layers (S-layers) represent an almost universal feature of archaebacterial cell envelopes and can be found in gram-positive and gram-negative eubacterial species from nearly all phylogenetic branches. S-layers consist of a single protein- or glycoprotein species and thus can be considered as one of the most primitive membrane structures developed during evolution. Prokaryotes carrying S-layers are ubiquitously found in every part of the biosphere. This supports the concept of a general supramolecular "porous crystalline surface layer" fulfilling a broad spectrum of functions which are strongly dependent on the particular environmental and ecological conditions. Their structural simplicity makes S-layers a suitable model for analyzing structure-function relationships as well as dynamic aspects of membrane morphogenesis.

Crystalline Cellulose and Derivatives: Characterization and Structures (Springer Series in Wood Science)

by Peter Zugenmaier

Cellulose as an abundant renewable material has stimulated basic and applied research that has resulted in significant progress in polymer science. This book discusses reliable crystal structures of all cellulose polymorphs and cellulose derivatives. Models are represented in graphs, together with a collection of geometrical data and the atomic coordinates. This book is a concise guide for members of the materials and life sciences communities interested in cellulose and related materials.

Crystalline Electric Field and Structural Effects in f-Electron Systems

by Jack E. Crow

Perhaps the title of this conference "Ctystalline Electric Field and Structural Effects in f-Electron Systems" reflects best the growth and direction of the field. The title and the conference itself go beyond "CEF" in two broad and important respects. First, the inter-relations between CEF and mode softenings, distortions due to quadruplar ordering or the Jahn­ Teller effect, have gained greater focus, hence the inclusion of . •• "Structral Effects. " Second, much greater emphasis on the actinides and, in particular, comparisons between actinides and the lighter rare earths is seen in this conference, hence the more general terminology . . . Iff-Electron Systems. " It seems clear that this comparison will lead to an extension to the actinides of mixed valence and Kondo considerations, as well as CEF effects. The emergence of a broader discipline which includes all f-electron systems and which is concerned with unstable, as well as stable, valence reflects the maturation of the field and a coming to grips with the complexity, as well as the unity, of f-electron systems. This maturation is also seen in the growing realization of the effects of CEF on transport, thermodynamic properties, and superconductivity and its co-existence with magnetic order. This volume contains 63 articles, all but two of which were presented at the Conference held in Philadelphia, U. S. A. , on 12-15 November, 1979. About 100 conferees from 13 countries attended the meeting which consisted of four full days of lecture presentations.

Crystalline Electric Field Effects in f-Electron Magnetism

by Robert Guertin

The present conference, the fourth successive on this subject, was organized to commemorate the 75th birthday of Professor Wtodzimierz Trzebiatowski, one of the pioneers in the field of f-electron materials structure, particularly in the magnetism of actinides. This volume contains 64 papers presented at the conference held in Wroctaw, Poland, September 22-25, 1981. Twenty-one were invited talks. About 100 participants from 13 countries attended the meeting during four days of lecture presentation (note these two numbers have been constant for the last two conferences). The conference consisted of sessions devoted to the investigation of crystalline electric fields and structural effects by spectroscopic techniques, neutron diffraction, magnetic, thermodynamic and electrical measurements all over broad temperature, magnetic field and pressure ranges. Materials investigated included rare earth intermetallics, hydrides, diluted systems and actinides, and among them some exhibited singlet ground state behavior. The experimental results were supplemented by theory. It is our pleasure to mention those persons who helped us make the conference successful. The International Advisory Com­ mittee included W.J.L. Buyers, B.R. Cooper, J.E. Crow, P. Fulde, A. Furrer, T. Kasuya, L. Kowalewski, G.R. Lander, R. Lemaire and D. Wohlleben. We thank them for valuable suggestions concerning invited speakers. We also wish to thank the co-workers of the In­ stitute for Low Temperature and Structure Research of the Polish Academy of Sciences in Wroclaw, especially A. Baran, M. Grzebyk, K.

Crystalline Metal Oxide Catalysts

by Wataru Ueda

This book introduces the innovatively advanced crystalline metal oxide catalysts that have multi-catalytic functions on the basis of spatially placed elements in crystal structure. With authors who are experts in their fields, the chapters of the book are organized according to catalytic function, on the basis of crystal structure. The book also covers the structure determination of micro–nano-sized metal oxide crystals that are now standard in most catalytic materials and new trends in catalyst development using materials informatics and catalytic informatics. The information contained here will guide researchers who are eager to carry out sustainable catalytic processes and ultimately to achieve a sustainable society in their quest for catalyst development.

Crystalline Semiconducting Materials and Devices (Physics of Solids and Liquids)

by Paul N. Butcher Norman H. March Mario P. Tosi

This book is concerned primarily with the fundamental theory underlying the physical and chemical properties of crystalIine semiconductors. After basic introductory material on chemical bonding, electronic band structure, phonons, and electronic transport, some emphasis is placed on surface and interfacial properties, as weil as effects of doping with a variety of impurities. Against this background, the use of such materials in device physics is examined and aspects of materials preparation are discussed briefty. The level of presentation is suitable for postgraduate students and research workers in solid-state physics and chemistry, materials science, and electrical and electronic engineering. Finally, it may be of interest to note that this book originated in a College organized at the International Centre for Theoretical Physics, Trieste, in Spring 1984. P. N. Butcher N. H. March M. P. Tosi vii Contents 1. Bonds and Bands in Semiconductors 1 E. Mooser 1. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 2. The Semiconducting Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3. Bond Approach Versus Band Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 4. Construction of the Localized X by Linear Combination of n Atomic Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1. 5. The General Octet Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 6. The Aufbau-Principle of the Crystal Structure of Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 7. A Building Principle for Polyanionic Structures . . . . . . . . . . . . . . . . . . . . . . 29 I. H. Structural Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1. 9. Chemical Bonds and Semiconductivity in Transition-Element Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1. 10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2. Electronic Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 G. Grosso 2. 1. Two Different Strategies for Band-Structure Calculations . . . . . . . 55 2. 2. The Tight-Binding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Crystalline State Photoreactions: Direct Observation of Reaction Processes and Metastable Intermediates

by Yuji Ohashi

This book focuses on a variety of photochemical reaction processes in the crystalline state. The crystalline state reaction is a new category of solid state reaction, in which a reaction occurs with retention of the single crystal form. The whole reaction processes were observed directly by X-ray and neutron diffractions. In this book, not only the structures of metastable intermediates, such as radicals, carbenes, and nitrenes, but also the unstable species of photochromic compounds and photo-excited structures are shown with colored figures of the molecular structures, with more than 200 figures. The book is an indispensable resource not only for organic, inorganic and physical chemists but also for graduate students, as it furnishes more than 300 references.

Crystallization: Basic Concepts and Industrial Applications

by Wolfgang Beckmann

Crystallization is a natural occurring process but also a process abundantly used in the industry. Crystallization can occur from a solution, from the melt or via deposition of material from the gas phase (desublimation). Crystals distinguish themself from liquids, gases and amorphous substances by the long-range order of its building blocks that entail the crystals to be formed of well-defined faces, and give rise to a large number of properties of the solid. Crystallization is used at some stage in nearly all process industries as a method of production, purification or recovery of solid materials. Crystallization is practiced on all scales: from the isolation of the first milligrams of a newly synthesized substance in the research laboratory to isolating products on the mulit-million tonne scale in industry. The book describes the breadth of crystallization operations, from isolation from a reaction broth to purification and finally to tailoring product properties. In the first section of the book, the basic mechanisms - nucleation, growth, attrition and agglomeration are introduced. It ensures an understanding of supersaturation, the driving force of crystallization. Furthermore, the solubility of the substance and its dependences on process conditions and the various techniques of crystallization and their possibilities and limitations are discussed. Last but not least, the first part includes an intensive treatment of polymorphism . The second part builds on the basics, exploring how crystallization processes can be developed, either batch-wise or continuous, from solution or from the melt. A discussion of the purification during crystallization serves as a link between the two sections, where practical aspects and an insight using theoretical concepts are combined. Mixing and its influence on the crystallization as well as the mutual interference of down-stream processes with the crystallization are also treated. Finally, techniques to characterize the crop are discussed. The third part of the book is dedicated to accounts of actual developments and of carried-out crystallizations. Typical pitfalls and strategies to avoid these as well as the design of robust processes are presented.

Crystallization: Basic Concepts and Industrial Applications

by Wolfgang Beckmann

Crystallization is a natural occurring process but also a process abundantly used in the industry. Crystallization can occur from a solution, from the melt or via deposition of material from the gas phase (desublimation). Crystals distinguish themself from liquids, gases and amorphous substances by the long-range order of its building blocks that entail the crystals to be formed of well-defined faces, and give rise to a large number of properties of the solid. Crystallization is used at some stage in nearly all process industries as a method of production, purification or recovery of solid materials. Crystallization is practiced on all scales: from the isolation of the first milligrams of a newly synthesized substance in the research laboratory to isolating products on the mulit-million tonne scale in industry. The book describes the breadth of crystallization operations, from isolation from a reaction broth to purification and finally to tailoring product properties. In the first section of the book, the basic mechanisms - nucleation, growth, attrition and agglomeration are introduced. It ensures an understanding of supersaturation, the driving force of crystallization. Furthermore, the solubility of the substance and its dependences on process conditions and the various techniques of crystallization and their possibilities and limitations are discussed. Last but not least, the first part includes an intensive treatment of polymorphism . The second part builds on the basics, exploring how crystallization processes can be developed, either batch-wise or continuous, from solution or from the melt. A discussion of the purification during crystallization serves as a link between the two sections, where practical aspects and an insight using theoretical concepts are combined. Mixing and its influence on the crystallization as well as the mutual interference of down-stream processes with the crystallization are also treated. Finally, techniques to characterize the crop are discussed. The third part of the book is dedicated to accounts of actual developments and of carried-out crystallizations. Typical pitfalls and strategies to avoid these as well as the design of robust processes are presented.

Crystallization and Growth of Colloidal Nanocrystals (SpringerBriefs in Materials)

by Edson Roberto Leite Caue Ribeiro

Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials. Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientation of the assembled nanoparticles to achieve structural accord at the particle-particle interface, the removal of adsorbates and solvent molecules, and, finally, the irreversible formation of chemical bonds to produce new single crystals, twins, and intergrowths. Crystallization and Growth of Colloidal Nanocrystals provides a current understanding of the mechanisms related to nucleation and growth for use in controlling nanocrystal morphology and physical-chemical properties, and is essential reading for any chemist or materials scientist with an interest in using nanocrystals as building blocks for larger structures. This book provides a compendium for the expert reader as well as an excellent introduction for advanced undergraduate and graduate students seeking a gateway into this dynamic area of research.

Crystallization as Studied by Broadband Dielectric Spectroscopy (Advances in Dielectrics)

by Tiberio A. Ezquerra Aurora Nogales

This book presents new approaches that offer a better characterization of the interrelationship between crystalline and amorphous phases. In recent years, the use of dielectric spectroscopy has significantly improved our understanding of crystallization. The combination of modern scattering methods, using either synchrotron light or neutrons and infrared spectroscopy with dielectrics, is now helping to reveal modifications of both crystalline and amorphous phases. In turn, this yields insights into the underlying physics of the crystallization process in various materials, e.g. polymers, liquid crystals and diverse liquids. The book offers an excellent introduction to a valuable application of dielectric spectroscopy, and a helpful guide for every scientist who wants to study crystallization processes by means of dielectric spectroscopy.

Crystallization from solutions and melts: (pdf)

by Eugenii Khamskii

Crystallization Modalities in Polymer Melt Processing: Fundamental Aspects Of Structure Formation

by Hermann Janeschitz-Kriegl

In addition to structure formation in crystallizing polymers and semicrystalline polymers, this second edition completes the topic of transport phenomena. It also reviews solidification by crystallization during cooling and under flow or pressure, which all play an enormous role in polymer melt processing.Generally, there is an intensive interaction between three transport phenomena: heat transfer, momentum transfer (flow, rheology) and (flow induced) crystallization. The strong interaction between the three transport phenomena is a major challenge when it comes to experimentation, and advances in this area are detailed in the book, guiding further development of sound modeling. This book enables readers to follow an advanced course in polymer processing. It is a valuable resource for polymer chemists, applied physicists, rheologists, plastics engineers, mold makers and material scientists.

Crystallization Modalities in Polymer Melt Processing: Fundamental Aspects of Structure Formation

by Hermann Janeschitz-Kriegl

Structure formation in crystallizing polymers, as occurring during processing, has not been treated so far in a coherent form. This fact explains, why this monograph is written as the ?rst book devoted to this subject. A quarter of a century ago the underdevelopment of this subject was obvious. Trial and error dominated. In fact, other apposite subjects as polymer melt rheology or heat transfer, had reached high levels. A great number of books has been devoted to them. Mold ?lling of amorphous polymers and the solidi?cation of these polymers by vitri?cation can nowadays be simulated numerically with a high degree of accuracy. In the solidi?ed sample even residual stresses and corresponding birefringence effects can accurately be 1 calculated . However, semicrystalline polymers, which form the majority of industrial po- mers, have been excluded from these considerations for good reasons. In fact, great uncertainties existed about the formation of quality determining crystalline str- tures. In particular, polyole?ns suffered from this shortcoming. In 1983 this fact instigated the polymer research group at the Johannes Kepler University in Linz to start with pertinent activities. The urgency of this kind of studies becomes evident, if advantages and hitches of these polymers are considered. 1. Versatility of processing: Injection molding into a great variety of shapes and sizes, from thin walled beakers to garden chairs, not to forget pipe and pro?le extrusion, cable coating, ?ber spinning, ?lm blowing. 2. Product qualities: Ductility, low density, good electric insulation, corrosion resistance, surface quality.

Crystallization of Nanoscaled Colloids (Springer Theses)

by Philip G. Born

This thesis deals with the processes that create ordered assemblies from disordered nanoparticles. Ordered packings of nanoscale particles can exhibit unusual properties. This work investigates the self-assembly of such particles, a process widely employed for the generation of ordered structures, but not yet well understood. In situ methods are used to observe the assembly of sub-micron polymer lattices and sub-10 nm gold particles into crystalline monolayers and aggregates. On the basis of these results, the book develops new models that describe the competition between different influences, such as thermal agitation and directional forces. It suggests necessary criteria that lead to the emergence of order.

Crystallization of Organic Compounds: An Industrial Perspective

by Hsien-Hsin Tung Edward L. Paul Michael Midler James A. McCauley

Filled with industrial examples emphasizing the practical applications of crystallization methodologies Based on the authors' hands-on experiences as process engineers at Merck, Crystallization of Organic Compounds guides readers through the practical aspects of crystallization. It uses plenty of case studies and examples of crystallization processes, ranging from development through manufacturing scale-up. The book not only emphasizes strategies that have been proven successful, it also helps readers avoid common pitfalls that can render standard procedures unsuccessful. The goal of this text is twofold: Build a deeper understanding of the fundamental properties of crystallization as well as the impact of these properties on crystallization process development. Improve readers' problem-solving abilities by using actual industrial examples with real process constraints. Crystallization of Organic Compounds begins with detailed discussions of fundamental thermodynamic properties, nucleation and crystal growth kinetics, process dynamics, and scale-up considerations. Next, it investigates modes of operation, including cooling, evaporation, anti-solvent, and reactive crystallization. The authors conclude with special applications such as ultrasound in crystallization and computational fluid dynamics in crystallization. Most chapters feature multiple examples that guide readers step by step through the crystallization of active pharmaceutical ingredients (APIs). With its focus on industrial applications, this book is recommended for chemical engineers and chemists who are involved with the development, scale-up, or operation of crystallization processes in the pharmaceutical and fine chemical industries.

Crystallization of Organic Compounds: An Industrial Perspective

by Hsien-Hsin Tung Edward L. Paul Michael Midler James A. McCauley

Crystallization of Organic Compounds Practical resource covering applications of crystallization principles with methodologies, case studies, and numerous industrial examples for emphasis Based on the authors’ hands-on experiences as process engineers, through the use of case studies and examples of crystallization processes, ranging from laboratory development through manufacturing scale-up, Crystallization of Organic Compounds guides readers through the practical applications of crystallization and emphasizes strategies that have proven to be successful, enabling readers to avoid common pitfalls that can render standard procedures unsuccessful. Most chapters feature multiple examples that guide readers, step by step, through the crystallization of active pharmaceutical ingredients (APIs), including an analysis of the major methods of carrying out crystallization operations, their strengths and potential issues, as well as numerous examples of crystallization processes from development through manufacturing scale. Advancements in the field of crystallization have been integrated throughout the book in the newly revised Second Edition to ensure the content adequately reflects current state-of-the-art industrial know-hows and practice. The new edition also adds chapters addressing downstream operations after the crystallization, including filtration/washing and drying, together with industrial use cases. Crystallization of Organic Compounds includes detailed information on: Solubility and solid behavior, covering phase rule, polymorph, salt/co-crystal, chiral resolution and in-silico solubility prediction; and kinetics, covering seed, supersaturation, nucleation, crystal growth and model-based experimental design Critical issues in the crystallization practice, covering oiling out, seeding/wet-milling, agglomeration/aggregation, mixing scale-up and quality-by-design principles Cooling, anti-solvent, evaporation and reactive crystallization process design, covering batch and continuous operations with industrial examples Special applications, covering crystallization with ultrasound, reaction selectivity enhancement, and computation fluid dynamics, and solid dispersion With highly practical coverage of the subject, Crystallization of Organic Compounds is an essential resource for engineers and chemists involved with the development, scaling, or operation of crystallization process in the pharmaceutical and fine chemical industries, particularly those with degrees in chemical engineering and chemistry.

Crystallization of Organic Compounds: An Industrial Perspective

by Hsien-Hsin Tung Edward L. Paul Michael Midler James A. McCauley

Crystallization of Organic Compounds Practical resource covering applications of crystallization principles with methodologies, case studies, and numerous industrial examples for emphasis Based on the authors’ hands-on experiences as process engineers, through the use of case studies and examples of crystallization processes, ranging from laboratory development through manufacturing scale-up, Crystallization of Organic Compounds guides readers through the practical applications of crystallization and emphasizes strategies that have proven to be successful, enabling readers to avoid common pitfalls that can render standard procedures unsuccessful. Most chapters feature multiple examples that guide readers, step by step, through the crystallization of active pharmaceutical ingredients (APIs), including an analysis of the major methods of carrying out crystallization operations, their strengths and potential issues, as well as numerous examples of crystallization processes from development through manufacturing scale. Advancements in the field of crystallization have been integrated throughout the book in the newly revised Second Edition to ensure the content adequately reflects current state-of-the-art industrial know-hows and practice. The new edition also adds chapters addressing downstream operations after the crystallization, including filtration/washing and drying, together with industrial use cases. Crystallization of Organic Compounds includes detailed information on: Solubility and solid behavior, covering phase rule, polymorph, salt/co-crystal, chiral resolution and in-silico solubility prediction; and kinetics, covering seed, supersaturation, nucleation, crystal growth and model-based experimental design Critical issues in the crystallization practice, covering oiling out, seeding/wet-milling, agglomeration/aggregation, mixing scale-up and quality-by-design principles Cooling, anti-solvent, evaporation and reactive crystallization process design, covering batch and continuous operations with industrial examples Special applications, covering crystallization with ultrasound, reaction selectivity enhancement, and computation fluid dynamics, and solid dispersion With highly practical coverage of the subject, Crystallization of Organic Compounds is an essential resource for engineers and chemists involved with the development, scaling, or operation of crystallization process in the pharmaceutical and fine chemical industries, particularly those with degrees in chemical engineering and chemistry.

Crystallization of Polymers (Nato Science Series C: #405)

by Marcel Dosière

Since the discovery that polymer single crystals are composed of chain folded macromolecules in 1957, the crystallization of polymers has attracted considerable interest and still provides fascinating and fruitful areas of research. Only a few books have been fully devoted to the crystallization of polymers in the past. This book contains the proceedings of the NATO ARW devoted to the `Crystallization of Polymers' which took place in September 1992 at the University of Mons-Hainaut (Belgium). In view of the variety of papers devoted to the crystallization of polymers, this book will be used in the next few years as a reference book for scientists concerned in the field of polymer physical chemistry. Crystallization of Polymers is mainly devoted to the experimental and theoretical study of the crystallization of synthetic polymers. As a kinetic study of the growth of polymer crystals should always be preceded by a morphological or a structural investigation, the structure, the morphology of polymer crystals and more particularly the lamellar and supralamellar organizations, as well as the nature of the crystal amorphous interface are reviewed and discussed.

Crystallization Processes under Hydrothermal Conditions (Studies in Soviet Science)

by A. N. Lobachev

This collection conta ins the results of a number of investiga­ tions which have been carried out in the Hydrothermal Synthesis Laboratory of the Institute of Crystallography, Academy of Sciences of the USSR; it constitutes a continuation of an earlier collection which appeared in 1968: Hydrothermal Synthesis of Crystals. Problems associated with the synthesis of oxides, simple and complex sulfides, carbonates, silicates, and germanates are consid­ ered, and a great deal of factual material relating to the growth of single crystals of some of these compounds on a seed is presented. Some of the articles pay special attention to the kinetic asp­ ect of the growth of crystals; the conditions of growth are relat­ ed to the morphological characteristics of the growing faces, and the relationship between the habit of the crystals and the oomposi­ tion and constitution of the solutions is considered. A fair number of articles are concerned with the crystalliza­ tion of new compounds, most of which have now been synthesized under hydrothermal conditions for the very first time; these in­ clude ternary chalcohalides of composition AVBvIVVII. zirconates, lithium silicates, and germanates. The collection also contains a description of the apparatus used for precision measurements at high temperatures and pres­ sures. We hope that this publication will present a better idea of the special characteristics of the hydrothermal method of synthes­ izing and .growing crystals, and will prove useful to all those in­ terested in this field of knowledge.

Refine Search

Showing 28,576 through 28,600 of 100,000 results