- Table View
- List View
Electrochemical Science and Technology: Fundamentals and Applications
by Keith Oldham Jan Myland Alan BondElectrochemistry is a discipline of wide scientific and technological interest. Scientifically, it explores the electrical properties of materials and especially the interfaces between different kinds of matter. Technologically, electrochemistry touches our lives in many ways that few fully appreciate; for example, materials as diverse as aluminum, nylon, and bleach are manufactured electrochemically, while the batteries that power all manner of appliances, vehicles, and devices are the products of electrochemical research. Other realms in which electrochemical science plays a crucial role include corrosion, the disinfection of water, neurophysiology, sensors, energy storage, semiconductors, the physics of thunderstorms, biomedical analysis, and so on. This book treats electrochemistry as a science in its own right, albeit resting firmly on foundations provided by chemistry, physics, and mathematics. Early chapters discuss the electrical and chemical properties of materials from which electrochemical cells are constructed. The behavior of such cells is addressed in later chapters, with emphasis on the electrodes and the reactions that occur on their surfaces. The role of transport to and from electrodes is a topic that commands attention, because it crucially determines cell efficiency. Final chapters deal with voltammetry, the methodology used to investigate electrode behavior. Interspersed among the more fundamental chapters are chapters devoted to applications of electrochemistry: electrosynthesis, power sources, “green electrochemistry”, and corrosion. Electrochemical Science and Technology is addressed to all who have a need to come to grips with the fundamentals of electrochemistry and to learn about some of its applications. It will constitute a text for a senior undergraduate or graduate course in electrochemistry. It also serves as a source of material of interest to scientists and technologists in various fields throughout academia, industry, and government – chemists, physicists, engineers, environmentalists, materials scientists, biologists, and those in related endeavors. This book: Provides a background to electrochemistry, as well as treating the topic itself. Is accessible to all with a foundation in physical science, not solely to chemists. Is addressed both to students and those later in their careers. Features web links (through www.wiley.com/go/EST) to extensive material that is of a more tangential, specialized, or mathematical nature. Includes questions as footnotes to support the reader’s evolving comprehension of the material, with fully worked answers provided on the web. Provides web access to Excel® spreadsheets which allow the reader to model electrochemical events. Has a copious Appendix of relevant data.
Electrochemical Science and Technology: Fundamentals and Applications
by Keith Oldham Jan Myland Alan BondElectrochemistry is a discipline of wide scientific and technological interest. Scientifically, it explores the electrical properties of materials and especially the interfaces between different kinds of matter. Technologically, electrochemistry touches our lives in many ways that few fully appreciate; for example, materials as diverse as aluminum, nylon, and bleach are manufactured electrochemically, while the batteries that power all manner of appliances, vehicles, and devices are the products of electrochemical research. Other realms in which electrochemical science plays a crucial role include corrosion, the disinfection of water, neurophysiology, sensors, energy storage, semiconductors, the physics of thunderstorms, biomedical analysis, and so on. This book treats electrochemistry as a science in its own right, albeit resting firmly on foundations provided by chemistry, physics, and mathematics. Early chapters discuss the electrical and chemical properties of materials from which electrochemical cells are constructed. The behavior of such cells is addressed in later chapters, with emphasis on the electrodes and the reactions that occur on their surfaces. The role of transport to and from electrodes is a topic that commands attention, because it crucially determines cell efficiency. Final chapters deal with voltammetry, the methodology used to investigate electrode behavior. Interspersed among the more fundamental chapters are chapters devoted to applications of electrochemistry: electrosynthesis, power sources, “green electrochemistry”, and corrosion. Electrochemical Science and Technology is addressed to all who have a need to come to grips with the fundamentals of electrochemistry and to learn about some of its applications. It will constitute a text for a senior undergraduate or graduate course in electrochemistry. It also serves as a source of material of interest to scientists and technologists in various fields throughout academia, industry, and government – chemists, physicists, engineers, environmentalists, materials scientists, biologists, and those in related endeavors. This book: Provides a background to electrochemistry, as well as treating the topic itself. Is accessible to all with a foundation in physical science, not solely to chemists. Is addressed both to students and those later in their careers. Features web links (through www.wiley.com/go/EST) to extensive material that is of a more tangential, specialized, or mathematical nature. Includes questions as footnotes to support the reader’s evolving comprehension of the material, with fully worked answers provided on the web. Provides web access to Excel® spreadsheets which allow the reader to model electrochemical events. Has a copious Appendix of relevant data.
Electrochemical Science for a Sustainable Society: A Tribute to John O’M Bockris
by Kohei UosakiThis book honors Professor. John O’M. Bockris, presenting authoritative reviews on some of the subjects to which he made significant contributions – i.e., electrocatalysis, fuel cells, electrochemical theory, electrochemistry of single crystals, in situ techniques, rechargeable batteries, passivity, and solar-fuels – and revealing the roles of electrochemical science and technology in achieving a sustainable society. Electrochemistry has long been an object of study and is now growing in importance, not only because of its fundamental scientific interest but also because of the central role it is expected to play in a future sustainable society. Professor John O’M. Bockris contributed greatly to various aspects of fundamental and applied electrochemistry – such as the structure of the double layer, kinetics and mechanism of the electrochemistry of hydrogen and oxygen, electrocatalysis, adsorption and electrochemical oxidation of small organic molecules, fuel cells, electrocrystallization, theoretical electrochemistry, new methods, photoelectrochemistry, bioelectrochemistry, corrosion and passivity, hydrogen in metals, ionic solutions and ionic liquids, and molten silicates and glasses, as well as socio-economic issues such as the hydrogen economy – for over half a century from 1945 until his retirement in 1997.
Electrochemical Sensing: Carcinogens in Beverages (Smart Sensors, Measurement and Instrumentation #20)
by Asif Iqbal Zia Subhas Chandra MukhopadhyayThis book describes a robust, low-cost electrochemical sensing system that is able to detect hormones and phthalates – the most ubiquitous endocrine disruptor compounds – in beverages and is sufficiently flexible to be readily coupled with any existing chemical or biochemical sensing system. A novel type of silicon substrate-based smart interdigital transducer, developed using MEMS semiconductor fabrication technology, is employed in conjunction with electrochemical impedance spectroscopy to allow real-time detection and analysis. Furthermore, the presented interdigital capacitive sensor design offers a sufficient penetration depth of the fringing electric field to permit bulk sample testing. The authors address all aspects of the development of the system and fully explain its benefits. The book will be of wide interest to engineers, scientists, and researchers working in the fields of physical electrochemistry and biochemistry at the undergraduate, postgraduate, and research levels. It will also be highly relevant for practitioners and researchers involved in the development of electromagnetic sensors.
Electrochemical Sensors in Immunological Analysis
by That T. NgoThe development of radioimmunoassay (RIA) by R.S. Yalow and S.A. Berson in 1959 opens up a new avenue in ultra sensitive analysis of trace substances in complex biological systems. In recognition of the enormous contributions of RIA to basic research in biology and to routine clinical tests in laboratory medicine, R.S. Yalow, the co-developer of RIA, was awarded, in 1977, the Nobel Prize for Medicine and Physiology. The basic principle of RIA is elegantly simple. It is based on a specific, competitive binding reaction between the analyte and the radio-labeled analog of the analyte for the specific antibody raised to the analyte. The combination of high specificity and affinity of an antibody molecule makes it a very versatile analytical reagent capable of reacting specifically with analytes at a very low concentration in a complex solution such as serum. The sensitivity of RIA is provided by using a radioactive tracer.
Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
by B. E. ConwayThe first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a parallel plate capacitor. The rigidity of such a model was allowed for by Gouy and Chapman inde pendently, by considering that ions in solution are subject to thermal motion so that their distribution from the metal surface turns out diffuse. Stern recognized that ions in solution do not behave as point charges as in the Gouy-Chapman treatment, and let the center of the ion charges reside at some distance from the metal surface while the distribution was still governed by the Gouy-Chapman view. Finally, in 1947, D. C. Grahame transferred the knowledge of the struc ture of electrolyte solutions into the model of a metal/solution interface, by en visaging different planes of closest approach to the electrode surface depending on whether an ion is solvated or interacts directly with the solid wall. Thus, the Gouy-Chapman-Stern-Grahame model of the so-called electrical double layer was born, a model that is still qualitatively accepted, although theoreti cians have introduced a number of new parameters of which people were not aware 50 years ago.
Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications (Electrochemical Energy Storage and Conversion)
by Aiping Yu Victor Chabot Jiujun ZhangAlthough recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.
Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications (Electrochemical Energy Storage and Conversion)
by Aiping Yu Victor Chabot Jiujun ZhangAlthough recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.
Electrochemical Surface Modification: Thin Films, Functionalization and Characterization (Advances in Electrochemical Sciences and Engineering #20)
by Richard C. Alkire Dieter M. Kolb Jacek Lipkowski Phil N. RossIn this topical volume, the authors provide in-depth coverage of the vital relationship between electrochemistry and the morphology of thin films and surfaces. Clearly divided into four major sections, the book covers nanoscale dielectric films for electronic devices, superconformal film growth, electrocatalytic properties of transition metal macrocycles, and the use of synchrotron techniques in electrochemistry. All the chapters offer a concise introduction to the relevant topic, as well as supplying numerous references for easy access to further reading and the original literature. The result is must-have reading for electrochemists, physical and surface chemists and physicists, as well as materials scientists and engineers active in the field of spectroscopic methods in electrochemistry.
Electrochemical Synthesis of Inorganic Compounds: A Bibliography
by Zoltan NagyElectrochemical synthesis of inorganic compounds is a relatively unknown field. The successful, large industrial processes, such as chlorine-caustic production, are well known, but the large number of other compounds that have been synthesized electrochemically are much less appreciated, even by electrochemists and inorganic chemists. The last comprehensive book on this subject was published in the 1930's and no modern review or summary of the whole field is in existence. But the field is in no way dormant, as attested by the large number of publications, undiminished throughout the years, describing new syntheses and improvements of old ones. Indeed, it can be expected that practical applications of electrochemical inor ganic syntheses will increase in the future as an increasing portion of our energy will be available in electrical form. Electrochemical processes have important advantages over chemical routes: often the selectivity of the reaction can be better controlled through the use of potential control at the electrode, and the creation of environmen tally harmful waste material can be avoided more easily since one is using the purest reagent - the electron. In addition to development of new synthetic routes, many old ones, which were found to be un economical in the past, are worth reexamining in light of the recent considerable advances in cell design principles, materials of construc tion, and electrode and separator materials, together with our im proved understanding of electrode reactions and electrocatalysis. It is in the hope of accelerating this process that this bibliography is published.
Electrochemical Systems (The ECS Series of Texts and Monographs)
by John Newman Nitash P. BalsaraProvides a comprehensive understanding of a wide range of systems and topics in electrochemistry This book offers complete coverage of electrochemical theories as they pertain to the understanding of electrochemical systems. It describes the foundations of thermodynamics, chemical kinetics, and transport phenomena—including the electrical potential and charged species. It also shows how to apply electrochemical principles to systems analysis and mathematical modeling. Using these tools, the reader will be able to model mathematically any system of interest and realize quantitative descriptions of the processes involved. This brand new edition of Electrochemical Systems updates all chapters while adding content on lithium battery electrolyte characterization and polymer electrolytes. It also includes a new chapter on impedance spectroscopy. Presented in 4 sections, the book covers: Thermodynamics of Electrochemical Cells, Electrode Kinetics and Other Interfacial Phenomena, Transport Processes in Electrolytic Solutions, and Current Distribution and Mass Transfer in Electrochemical Systems. It also features three appendixes containing information on: Partial Molar Volumes, Vectors and Tensors, and Numerical Solution of Coupled, Ordinary Differential Equations. Details fundamental knowledge with a thorough methodology Thoroughly updated throughout with new material on topics including lithium battery electrolyte characterization, impedance analysis, and polymer electrolytes Includes a discussion of equilibration of a charged polymer material and an electrolytic solution (the Donnan equilibrium) A peerless classic on electrochemical engineering Electrochemical Systems, Fourth Edition is an excellent resource for students, scientists, and researchers involved in electrochemical engineering.
Electrochemical Systems (The ECS Series of Texts and Monographs)
by John Newman Nitash P. BalsaraProvides a comprehensive understanding of a wide range of systems and topics in electrochemistry This book offers complete coverage of electrochemical theories as they pertain to the understanding of electrochemical systems. It describes the foundations of thermodynamics, chemical kinetics, and transport phenomena—including the electrical potential and charged species. It also shows how to apply electrochemical principles to systems analysis and mathematical modeling. Using these tools, the reader will be able to model mathematically any system of interest and realize quantitative descriptions of the processes involved. This brand new edition of Electrochemical Systems updates all chapters while adding content on lithium battery electrolyte characterization and polymer electrolytes. It also includes a new chapter on impedance spectroscopy. Presented in 4 sections, the book covers: Thermodynamics of Electrochemical Cells, Electrode Kinetics and Other Interfacial Phenomena, Transport Processes in Electrolytic Solutions, and Current Distribution and Mass Transfer in Electrochemical Systems. It also features three appendixes containing information on: Partial Molar Volumes, Vectors and Tensors, and Numerical Solution of Coupled, Ordinary Differential Equations. Details fundamental knowledge with a thorough methodology Thoroughly updated throughout with new material on topics including lithium battery electrolyte characterization, impedance analysis, and polymer electrolytes Includes a discussion of equilibration of a charged polymer material and an electrolytic solution (the Donnan equilibrium) A peerless classic on electrochemical engineering Electrochemical Systems, Fourth Edition is an excellent resource for students, scientists, and researchers involved in electrochemical engineering.
Electrochemical Systems (The ECS Series of Texts and Monographs)
by John Newman Karen E. Thomas-AlyeaThe new edition of the cornerstone text on electrochemistry Spans all the areas of electrochemistry, from the basics of thermodynamics and electrode kinetics to transport phenomena in electrolytes, metals, and semiconductors. Newly updated and expanded, the Third Edition covers important new treatments, ideas, and technologies while also increasing the book's accessibility for readers in related fields. Rigorous and complete presentation of the fundamental concepts In-depth examples applying the concepts to real-life design problems Homework problems ranging from the reinforcing to the highly thought-provoking Extensive bibliography giving both the historical development of the field and references for the practicing electrochemist.
Electrochemical Systems (The ECS Series of Texts and Monographs)
by John Newman Karen E. Thomas-AlyeaThe new edition of the cornerstone text on electrochemistry Spans all the areas of electrochemistry, from the basics of thermodynamics and electrode kinetics to transport phenomena in electrolytes, metals, and semiconductors. Newly updated and expanded, the Third Edition covers important new treatments, ideas, and technologies while also increasing the book's accessibility for readers in related fields. Rigorous and complete presentation of the fundamental concepts In-depth examples applying the concepts to real-life design problems Homework problems ranging from the reinforcing to the highly thought-provoking Extensive bibliography giving both the historical development of the field and references for the practicing electrochemist.
Electrochemical Transformation of Renewable Compounds
by Zhiqun Lin Xueqin Liu Zhen Li Yanqiu HuangElectrochemical conversion process can be used to generate power, store energy and synthesize chemicals, which plays a key role in the development of sustainable energy resources. Electrochemical Transformation of Renewable Compounds presents the basic fundamentals of different electrochemical transformations for clean energy and places significant emphasis on the key developments of various electrochemical processes using state-of-the-art materials. Written by electrochemical energy scientists who have worked on the application of electrocatalysis in the environmental and energy area, this book provides comprehensive coverage of main electrochemical transformation processes, including oxygen evolution, hydrogen generation, oxygen reduction, carbon dioxide reduction, nitrogen reduction, methanol oxidation, urea oxidation and ammonia oxidation.
Electrochemical Transformation of Renewable Compounds
by Zhiqun Lin Xueqin Liu Zhen Li Yanqiu HuangElectrochemical conversion process can be used to generate power, store energy and synthesize chemicals, which plays a key role in the development of sustainable energy resources. Electrochemical Transformation of Renewable Compounds presents the basic fundamentals of different electrochemical transformations for clean energy and places significant emphasis on the key developments of various electrochemical processes using state-of-the-art materials. Written by electrochemical energy scientists who have worked on the application of electrocatalysis in the environmental and energy area, this book provides comprehensive coverage of main electrochemical transformation processes, including oxygen evolution, hydrogen generation, oxygen reduction, carbon dioxide reduction, nitrogen reduction, methanol oxidation, urea oxidation and ammonia oxidation.
Electrochemical Water Electrolysis: Fundamentals and Technologies (Electrochemical Energy Storage and Conversion)
by Lei Zhang; Hongbin Zhao; David P. Wilkinson; Xueliang Sun; Jiujun ZhangThis book comprehensively describes the fundamentals of electrochemical water electrolysis as well as the latest materials and technological developments. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms, as well as challenges and strategies. It also includes an understanding of how materials and technologies for electrochemical water electrolysis have developed in recent years, and it describes the progress in improving performance and providing benefits to energy systems and applications. Features the most recent advances in electrochemical water electrolysis to produce hydrogen Discusses cutting-edge materials and technologies for electrochemical water electrolysis Includes both experimental and theoretical approaches that can be used to guide and promote materials as well as technological development for electrochemical water electrolysis Comprises work from international leading scientists active in electrochemical energy and environmental research and development Provides invaluable information that will benefit readers from both academia and industry With contributions from researchers at the top of their fields, the book includes in-depth discussions covering the engineering of components and applied devices, making this an essential read for scientists and engineers working in the development of electrochemical energy devices and related disciplines.
Electrochemical Water Electrolysis: Fundamentals and Technologies (Electrochemical Energy Storage and Conversion)
by Lei Zhang HongBin Zhao David P. Wilkinson Xueliang Sun Jiujun ZhangThis book comprehensively describes the fundamentals of electrochemical water electrolysis as well as the latest materials and technological developments. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms, as well as challenges and strategies. It also includes an understanding of how materials and technologies for electrochemical water electrolysis have developed in recent years, and it describes the progress in improving performance and providing benefits to energy systems and applications. Features the most recent advances in electrochemical water electrolysis to produce hydrogen Discusses cutting-edge materials and technologies for electrochemical water electrolysis Includes both experimental and theoretical approaches that can be used to guide and promote materials as well as technological development for electrochemical water electrolysis Comprises work from international leading scientists active in electrochemical energy and environmental research and development Provides invaluable information that will benefit readers from both academia and industry With contributions from researchers at the top of their fields, the book includes in-depth discussions covering the engineering of components and applied devices, making this an essential read for scientists and engineers working in the development of electrochemical energy devices and related disciplines.
Electrochemical Water Oxidation at Iron: Controlled Nanostructuring as Key for Enhanced Water Oxidation Efficiency (BestMasters)
by Sandra HaschkeSandra Haschke presents a strategy to enhance the Fe2O3 electrode performance by controlled nanostructuring of the catalyst surface, based on anodized aluminum oxide coated by means of atomic layer deposition. Furthermore, she investigates the influence of underlying conductive layers and post-deposition annealing on the electrode performance and the associated changes in morphology and chemical composition. Exploiting all effects combined delivers an increase in steady-state water oxidation throughput by a factor of 2.5 with respect to planar electrodes.
Electrochemically Assisted Remediation of Contaminated Soils: Fundamentals, Technologies, Combined Processes and Pre-Pilot and Scale-Up Applications (Environmental Pollution #30)
by M. A. Rodrigo E. V. Dos SantosThis book provides an overview of the current development status of remediation technologies involving electrochemical processes, which are used to clean up soils that are contaminated with different types of contaminants (organics, inorganics, metalloids and radioactive). Written by internationally recognized experts, it comprises 21 chapters describing the characteristics and theoretical foundations of various electrochemical applications of soil remediation. The book’s opening section discusses the fundamental properties and characteristics of the soil, which are essential to understand the processes that can most effectively remove organic and inorganic compounds. This part also focuses on the primary processes that contribute to the application of electrochemically assisted remediation, hydrodynamic aspects and kinetics of contaminants in the soil. It also reviews the techniques that have been developed for the treatment of contaminated soils using electrochemistry, and discusses different strategies used to enhance performance, the type of electrode and electrolyte, and the most important operating conditions. In turn, the book’s second part deals with practical applications of technologies related to the separation of pollutants from soil. Special emphasis is given to the characteristics of these technologies regarding transport of the contaminants and soil toxicity after treatment. The third part is dedicated to new technologies, including electrokinetic remediation and hybrid approaches, for the treatment of emerging contaminants by ex-situ and in-situ production of strong oxidant species used for soil remediation. It also discusses pre-pilot scale for soil treatment and the use of solar photovoltaic panels as an energy source for powering electrochemical systems, which can reduce both the investment and maintenance costs of electrochemically assisted processes.
Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms for Energy Conversion
Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms for Energy Conversion covers topics related to current research in electrochemical power sources, highlighting some of the latest concepts in electrochemical conversion for sustainability. The book examines the most recent and innovative technologies employed in battery and
Electrochemically Engineered Nanoporous Materials: Methods, Properties and Applications (Springer Series in Materials Science #220)
by Dusan Losic Abel SantosThis book provides in-depth knowledge about the fabrications, structures, properties and applications of three outstanding electrochemically engineered nanoporous materials including porous silicon, nanoporous alumina and nanotubular titania. The book integrates three major themes describing these materials. The first theme is on porous silicon reviewing the methods for preparation by electrochemical etching, properties and methods for surface functionalization relevant for biosensing applications. Biomedical applications of porous silicon are major focus, described in several chapters reviewing recent developments on bioanalysis, emerging capture probes and drug delivery. The second theme on nanoporous alumina starts with describing the concept of self-organized electrochemical process used for synthesis nanopore and nanotube structures of valve metal oxides and reviewing recent development and progress on this field. The following chapters are focused mainly on optical properties and biosensing application of nanoporous alumina providing the reader with the depth of understanding of the structure controlled optical and photonic properties and design of optical biosensing devices using different detection principles such as photoluminescence, surface plasmon resonance, reflective spectrometry, wave guiding, Raman scattering etc. The third theme is focused on nanotubular titania reviewing three key applications including photocatalysis, solar cells and drug delivery. The book represents an important resource for academics, researchers, industry professionals, post-graduate and high-level undergraduate students providing them with both an overview of the current state-of-the-art on these materials and their future developments.
Electrochemistry: A Reformulation of the Basic Principles (Lecture Notes in Chemistry #17)
by H. G. HertzIn this book a presentation of a phenomenological theory of elec trochemistry is given. More precisely, it should be stated that only one part of the whole field of electrochemistry is developed. It is the purpose of this treatment to describe the interconnection between the electric current in a composite thermodynamic system and the rate of production of a certain substance on the one side, the rate of deple tion of another substance on the other side, and the work per unit time which has to be delivered to or is supplied by the system. The last part of this programme leads to the computation of the electric potential or the electromotive force of a typical arrangement called a galvanic cell. It will only be the electric current~ which is considered, not the change of the electric current per unit time, i.e. d~/P{t • The vari ation of Jz with time would have to be the subject of the second part of this new treatment of electrochemistry.
Electrochemistry: The Basics, With Examples
by Christine Lefrou Pierre Fabry Jean-Claude PoignetThis textbook offers original and new approaches to the teaching of electrochemical concepts, principles and applications. Throughout the text the authors provide a balanced coverage of the thermodynamic and kinetic processes at the heart of electrochemical systems. The first half of the book outlines fundamental concepts appropriate to undergraduate students and the second half gives an in-depth account of electrochemical systems suitable for experienced scientists and course lecturers. Concepts are clearly explained and mathematical treatments are kept to a minimum or reported in appendices. This book features:- Questions and answers for self-assessment- Basic and advanced level numerical descriptions- Illustrated electrochemistry applications This book is accessible to both novice and experienced electrochemists and supports a deep understanding of the fundamental principles and laws of electrochemistry.
Electrochemistry
by P.H. RiegerIt has been fashionable to describe electrochemistry as a discipline at the interface between the branches of chemistry and many other sciences. A perusal of the table of contents will affirm that view. Electrochemistry finds applications in all branches of chemistry as well as in biology, biochemistry, and engineering; electrochemistry gives us batteries and fuel cells, electroplating and electrosynthesis, and a host of industrial and technological applications which are barely touched on in this book. However, I will maintain that electrochemistry is really a branch of physical chemistry. Electrochemistry grew out of the same tradition which gave physics the study of electricity and magnetism. The reputed founders of physical chemistry-Arrhenius, Ostwald, and van't Hoff-made many of their contributions in areas which would now be regarded as electrochemistry. With the post-World War II capture of physical chemistry by chemical physicists, electrochemists have tended to retreat into analytical chemistry, thus defining themselves out of a great tradition. G. N. Lewis defined physical chemistry as "the study of that which is interesting." I hope that the readers of this book will find that electrochemistry qualifies.