- Table View
- List View
Electromagnetic Aquametry: Electromagnetic Wave Interaction with Water and Moist Substances
by Klaus KupferMformation about a material can be gathered from its interaction with electromagnetic waves. The information may be stored in the amplitude, the phase, the polarisation, the angular distribution of energy transportation or the spectral characteristics. When re trieved from the wave, certain material properties may thus be determined indirectly. Compared on the one hand to direct material analysis, an indirect method requires calibration and is prone to interference from undesired sources. On the other hand, however, it permits the determination of features inaccessible by direct methods, such as non-destructive material interrogation, high measurement speed, or deep penetration depth. However, being a physical method, the use of electromagnetic waves is still handicapped by the lack of acceptance by many chemists, who are used to applying direct approaches. Historically, the first application of electromagnetic wave interaction with mat ter involved measurement of amplitude changes at a single frequency caused by material properties, and it is still used today by some systems. This approach was soon supplemented by single frequency phase measurements, in order to avoid distortions through amplitude instabilities or parasitic reflections. Such single pa rameter measurements of course require dependence only on one variable in the measured process and sufficient stability of all other ancillary conditions. If that is not the case, the single parameter measurement fails.
Electromagnetic Biointeraction: Mechanisms, Safety Standards, Protection Guides
by Giorgio FranceschettiThis book collects the revised lectures held at Capri (Italy) in the period 2-6 May, 1988 in occasion of the International Course on "Worldwide Nonionizing Radiation Safety Standards: Their Rationales and Problems". The Course was organized by IRECE (Institute for Research in Electromagnetism and Electronic Components) of CNR (Italian National Council for Research) and was directed by professors Giorgio Franceschetti and Om P. Gandhi. The idea for this course arose from the continuing wide disparity in the electromagnetic (EM) radiation safety standards worldwide, and the confusion that this has caused in the public mind. The safety guidelines in the western countries have been nearly three orders of magnitude greater than the safety levels in the Eastern European countries. Even though the former have been slightly reduced and the latter have been increased somewhat in recent years, there is still a wide gap in the EM safety standards that are used. With the ever increasing use of EM energy the public is becoming increasingly aware of and concerned about the potential biohazards of EM fields. This problem is compounded by inadequate knowledge of nonthermal mechanisms of interaction of EM fields with biological systems. The lecturers for the Course were the recognized leaders in their respective areas within the discipline of Biological Effects of Electromagnetic Fields.
Electromagnetic Boundary Problems
by Edward F. Kuester David C. ChangElectromagnetic Boundary Problems introduces the formulation and solution of Maxwell's equations describing electromagnetism. Based on a one-semester graduate-level course taught by the authors, the text covers material parameters, equivalence principles, field and source (stream) potentials, and uniqueness, as well as:Provides analytical solutions
Electromagnetic Boundary Problems
by Edward F. Kuester David C. ChangElectromagnetic Boundary Problems introduces the formulation and solution of Maxwell's equations describing electromagnetism. Based on a one-semester graduate-level course taught by the authors, the text covers material parameters, equivalence principles, field and source (stream) potentials, and uniqueness, as well as:Provides analytical solutions
Electromagnetic Brain Imaging: A Bayesian Perspective (Series In Biomedical Engineering Ser.)
by Kensuke Sekihara Srikantan S. NagarajanThis graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging.
Electromagnetic Cascade and Chemistry of Exotic Atoms (Ettore Majorana International Science Series #52)
by D. Horváth L. M. Simons G. TorelliThis Workshop was organized to bring once more tagether the scientists of the rather heterogeneaus field of exotic atoms. At present the main topic of the field seems to be the study of the atomic cascade. There are some who study it intentionally -Iet us call them cascadeurs -and others who think they investigate other features of the exotic atoms (like Coulomb capture, particle transfer, muon catalyzed fusion, chemical effects, fundamental properties, etc.) -users-while in fact they study some special consequences of the same atomic cascade. We decided to get cascadeurs and users discuss the problems of exotic atoms at wonderful Erice, at the 5th Course of the International School of Physics of Exotic Atoms. Our Workshop was quite successful, we have heard excellent talks from participants from a dozen countfies and most of them have prepared written contributions for this volume. The Organizers express their gratitude to all participants for their contributions, especially to David Measday for bis concluding remarks (not printed here) and to James Cohen for jumping in for Leonid Ponomarev who had to leave unexpectedly in the middle of the meeting. We greatly appreciate the enthusiastic help of Marianne Signer in every stage of the organization work. Am!, of course, the Workshop could not happen at all without the incredibly efficient organization by the Ettore Majorana Centre of Scientific Culture. Leopold M. Simons Dezsö Horvath Gabriele Torelli V CONTENTS OPENING ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . xi . . . . . . .
Electromagnetic Compatibility: Analysis and Case Studies in Transportation
by Donald G. BakerExplains and resolves the electromagnetic compatibility challenges faced by engineers in transportation and communications This book is a mathematically-rich extension of courses required to maintain the Federal Communications Commission (FCC), the Canadian Standards Association (CSA), and the European Union certifications. The text provides an in-depth study of the electromagnetic compatibility (EMC) issues related to specific topics in transportation and communications, including Light Rail Transit, shadow effects, and radio dead spots, through the analysis of real-world case studies in the United States and Europe. The author provides Cartesian, cylindrical, and spherical solutions that can be applied to Maxwell's and Wave Equations. The book covers topics such as SCADA Systems, shielding, and complexities of radio frequencies and their effect on communication houses. The author also provides information for alternative industries to apply the solutions from the case studies and background content to their own professions. Presents a series of over twenty real-world case studies related to EMC in transportation and communications Covers power line radiation, shadow effects on subway cars, train control systems, and edge distortions Includes the OATS testing method and Department of Transportation (DOT) test Provides access to a companion website housing power point slides and additional appendices Electromagnetic Compatibility: Analysis and Case Studies in Transportation is a reference for practicing engineers involved in transportation and communications, as well as post-graduate engineering students studying transportation and communications in engineering.
Electromagnetic Compatibility: Analysis and Case Studies in Transportation
by Donald G. BakerExplains and resolves the electromagnetic compatibility challenges faced by engineers in transportation and communications This book is a mathematically-rich extension of courses required to maintain the Federal Communications Commission (FCC), the Canadian Standards Association (CSA), and the European Union certifications. The text provides an in-depth study of the electromagnetic compatibility (EMC) issues related to specific topics in transportation and communications, including Light Rail Transit, shadow effects, and radio dead spots, through the analysis of real-world case studies in the United States and Europe. The author provides Cartesian, cylindrical, and spherical solutions that can be applied to Maxwell's and Wave Equations. The book covers topics such as SCADA Systems, shielding, and complexities of radio frequencies and their effect on communication houses. The author also provides information for alternative industries to apply the solutions from the case studies and background content to their own professions. Presents a series of over twenty real-world case studies related to EMC in transportation and communications Covers power line radiation, shadow effects on subway cars, train control systems, and edge distortions Includes the OATS testing method and Department of Transportation (DOT) test Provides access to a companion website housing power point slides and additional appendices Electromagnetic Compatibility: Analysis and Case Studies in Transportation is a reference for practicing engineers involved in transportation and communications, as well as post-graduate engineering students studying transportation and communications in engineering.
Electromagnetic Compatibility: Principles and Applications
by Yang Zhao Wei Yan Jun Sun Mengxia Zhou Zhaojuan MengThis book highlights principles and applications of electromagnetic compatibility (EMC). After introducing the basic concepts, research progress, standardizations and limitations of EMC, the book puts emphasis on presenting the generation mechanisms and suppression principles of conducted electromagnetic interference (EMI) noise, radiated EMI noise, and electromagnetic susceptibility (EMS) problems such as electrostatic discharge (ESD), electric fast transient (EFT) and surge. By showing EMC case studies and solved examples, the book provides effective solutions to practical engineering problems. Students and researchers will be able to use the book as practical reference for EMC-related measurements and problem- solution.
Electromagnetic Compatibility (EMC) Design and Test Case Analysis
by Junqi ZhengA practical introduction to techniques for the design of electronic products from the Electromagnetic compatibility (EMC) perspective Introduces techniques for the design of electronic products from the EMC aspects Covers normalized EMC requirements and design principles to assure product compatibility Describes the main topics for the control of electromagnetic interferences and recommends design improvements to meet international standards requirements (FCC, EU EMC directive, Radio acts, etc.) Well organized in a logical sequence which starts from basic knowledge and continues through the various aspects required for compliance with EMC requirements Includes practical examples and case studies to illustrate design features and troubleshooting Author is the founder of the EMC design risk evaluation approach and this book presents many years’ experience in teaching and researching the topic
Electromagnetic Compatibility (EMC) Design and Test Case Analysis
by Junqi ZhengA practical introduction to techniques for the design of electronic products from the Electromagnetic compatibility (EMC) perspective Introduces techniques for the design of electronic products from the EMC aspects Covers normalized EMC requirements and design principles to assure product compatibility Describes the main topics for the control of electromagnetic interferences and recommends design improvements to meet international standards requirements (FCC, EU EMC directive, Radio acts, etc.) Well organized in a logical sequence which starts from basic knowledge and continues through the various aspects required for compliance with EMC requirements Includes practical examples and case studies to illustrate design features and troubleshooting Author is the founder of the EMC design risk evaluation approach and this book presents many years’ experience in teaching and researching the topic
Electromagnetic Compatibility in Medical Equipment: A Guide for Designers and Installers
by William D. Kimmel Daryl GerkeCo-published with the IEEE Press, this book is a practical, hands-on guide to EMC issues for medical device designers and installers. It addresses electromagnetic interference and covers the basics of EMC design, physics, and installation, minimizing theory and concentrating upon the correct way to ground and shield. Covering EMC from the inside out, the book provides the basics of electronics, discusses and evaluates problems and common causes, and explores effective remedial techniques at three levels: circuit, box, and interconnect. It contains appendices that provide important reference material such as constants and conversion factors.
Electromagnetic Compatibility in Medical Equipment: A Guide for Designers and Installers
by William D. Kimmel Daryl GerkeCo-published with the IEEE Press, this book is a practical, hands-on guide to EMC issues for medical device designers and installers. It addresses electromagnetic interference and covers the basics of EMC design, physics, and installation, minimizing theory and concentrating upon the correct way to ground and shield. Covering EMC from the inside out, the book provides the basics of electronics, discusses and evaluates problems and common causes, and explores effective remedial techniques at three levels: circuit, box, and interconnect. It contains appendices that provide important reference material such as constants and conversion factors.
Electromagnetic Computation Methods for Lightning Surge Protection Studies (Wiley - IEEE)
by Yoshihiro Baba Vladimir A. RakovPresents current research into electromagnetic computation theories with particular emphasis on Finite-Difference Time-Domain Method This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell’s equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of energy and information, such as overhead power lines, air-insulated sub-stations, wind turbine generator towers and telecommunication towers. Both authors are internationally recognized experts in the area of lightning study and this is the first book to present current research in lightning surge protection Examines in detail why lightning surges occur and what can be done to protect against them Includes theories of electromagnetic computation methods and many examples of their application Accompanied by a sample printed program based on the finite-difference time-domain (FDTD) method written in C++ program
Electromagnetic Computation Methods for Lightning Surge Protection Studies (Wiley - IEEE)
by Yoshihiro Baba Vladimir A. RakovPresents current research into electromagnetic computation theories with particular emphasis on Finite-Difference Time-Domain Method This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell’s equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of energy and information, such as overhead power lines, air-insulated sub-stations, wind turbine generator towers and telecommunication towers. Both authors are internationally recognized experts in the area of lightning study and this is the first book to present current research in lightning surge protection Examines in detail why lightning surges occur and what can be done to protect against them Includes theories of electromagnetic computation methods and many examples of their application Accompanied by a sample printed program based on the finite-difference time-domain (FDTD) method written in C++ program
Electromagnetic Coupling in the Polar Clefts and Caps (Nato Science Series C: #278)
by Per Even Sandholt A. EgelandProceedings of the NATO Advanced Research Workshop, Lillehammer, Norway, September 20-24, 1988
Electromagnetic Field Computation by Network Methods
by Leopold B. Felsen Mauro Mongiardo Peter RusserIn this monograph, the authors propose a systematic and rigorous treatment of electromagnetic field representations in complex structures. The architecture suggested in this book accommodates use of different numerical methods as well as alternative Green's function representations in each of the subdomains resulting from a partitioning of the overall problem. The subdomains are regions of space where electromagnetic energy is stored and are described in terms of equivalent circuit representations based either on lumped element circuits or on transmission lines. Connection networks connect the subcircuits representing the subdomains. The connection networks are lossless, don't store energy and represent the overall problem topology. This is similar to what is done in circuit theory and permits a phrasing of the solution of EM field problems in complex structures by Network-oriented methods.
Electromagnetic Field Matter Interactions in Thermoelasic Solids and Viscous Fluids (Lecture Notes in Physics #710)
by Kolumban Hutter Alfons A.F. Ven Ana UrsescuThis book delivers a thorough derivation of nonrelativistic interaction models of electromagnetic field theories with thermoelastic solids and viscous fluids, the intention being to derive unique representations for the observable field quantities. This volume is intended for and will be useful to students and researchers working on all aspects of electromagneto-mechanical interactions in the materials sciences of complex solids and fluids.
Electromagnetic Field Near Conducting Half-Space: Theory and Application Potentials (Lecture Notes in Electrical Engineering #1070)
by Yuriy Vasetsky Artur ZaporozhetsThe book is devoted to the solution of one general problem of the theory of a three-dimensional quasi-stationary sinusoidal and pulse electromagnetic field. These studies, unlike many well-known works, are based on obtained exact analytical solution of the problem for the field, generated by external current sources near the conducting body with plane surface. The solution for the vector and scalar potentials, electric and magnetic intensities in the dielectric and conducting media is found without restrictions on the configuration of current sources,properties of the media and field frequency. Some general properties of field formation for arbitrary field in the considered system are obtained (in particular, full compensation by the field of the electric charge distributed on the interface between the media, the normal component of the induced external electric field and, accordingly, the equality to zero the components both of the current density and the electric field intensity perpendicular to the interface; the non-uniform electromagnetic field decreases in depth of conducting medium faster than uniform field). It is shown that the exact analytical solution depends on the values of the parameter proportional to the ratio of the field penetration depth to the distance between the external field sources and the body. The concept of strong skin effect is extended to the case of small value of the introduced parameter. A significant simplification of theexpressions was obtained as an asymptotic expansion on this small parameter. In the case of pulsed fields approximate method gives the highest accuracy during important initial period of pulse time. For asymptotic expansion the approximate impedance boundary condition is generalized to the diffusion of non-uniform field into conducting medium. The book is intended for the researchers, postgraduate students and students specialized in theory and calculations of electromagnetic fields.
Electromagnetic Field Theories for Engineering
by Md. Abdus SalamA four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.
Electromagnetic Field Theory for Engineers and Physicists
by Günther LehnerDiscussed is the electromagnetic field theory and its mathematical methods. Maxwell’s equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields.The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the theory of special relativity, which allows to simplify a number of field theory problems, complements this book.A book whose usefulness is not limited to engineering students, but can be very helpful for physicists and other branches of science.
Electromagnetic Fields: Restrictions and Approximation
by Boris Z. KatsenelenbaumThe fields scattered by metallic bodies or radiated by some types of antennas are created by the surfaces currents and therefore they are subject to some restrictions. The book is the first one where the properties of these fields are investigated in details. The properties have the important significance for the antenna synthesis, body shape reconstruction and other diffraction problems. The material of the book lies in the meetingpoint of the antenna theory, highfrequency electrodynamics and inverse scattering problems. The author is an internationally renowned investigator in the field of electromagnetic waves and diffraction theory.
Electromagnetic Fields (IEEE Press Series on Electromagnetic Wave Theory #19)
by Jean G. Van BladelProfessor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.