Browse Results

Showing 39,251 through 39,275 of 100,000 results

Electron Holography for Electromagnetic Materials (Springer Series in Materials Science #347)

by Daisuke Shindo Zentaro Akase

This book discusses the direct imaging of electric and magnetic fields of various functional materials using electron holography, providing indispensable information for understanding their electromagnetic properties. In order to clearly demonstrate the principles of this cutting-edge technology, easy-to-understand explanations are accompanied by numerous illustrations and figures throughout the book. The book highlights the dynamic nature of electromagnetic fields in novel materials, as revealed by changing temperature, or applying electric current and magnetic fields. Furthermore, it showcases, as a new development of the technique, the direct observation of accumulation and collective motion of electrons around charged insulators. Clear experimental data on electromagnetic fields and the motions of electrons help the reader understand their importance in materials science and fundamental physics. Seeing is believing!

Electron Impact Ionization

by T. D. Märk G. H. Dunn

It is perhaps surprising that a process which was one of the first to be studied on an atomic scale, and a process which first received attention over seven decades ago, continues to be the object of diverse and intense research efforts. Such is the case with the (seemingly) conceptually simple and familiar mechanism of electron­ impact ionization of atoms, molecules, and ions. Not only has the multi-body nature of the collision given ground to theoretical effort only grudgingly, but also the variety and subtlety of processes contributing to ionization have helped insure that progress has come only with commensurate work: no pain - no gain. Modern experimental methods have made it possible to effectively measure and explore threshold laws, differential cross sections, partial cross sections, inner-shell ionization, and the ionization of unstable species such as radicals and ions. In most instances the availability of experimental data has provided impetus and guidance for further theoretical progress.

Electron-Ion-Plasma Modification of a Hypoeutectoid Al-Si Alloy

by Dmitrii Zaguliaev Victor Gromov Sergey Konovalov Yurii Ivanov

Electron-Ion-Plasma Modification of a Hypereutectic Al-Si Alloy details theoretical and experimental research and computer simulation of structural phase transformations in AlSi10Mn2Ni Silumin on different scale levels under electroexplosion alloying, electron beam processing and electron-plasma alloying at the nanolevel in order to create new materials. The authors summarize and analyze more than 10 years of research on the electron-ion-plasma effect on strength properties and structure-phase states’ transformations of hypoeutectic Silumin. Key Features: Details physical and mathematical models of mechanisms of surface layer hardening under conditions of varying energy effects Offers insights into improved strength characteristics of Silumin Explores optimal processing modes for increased strength and improved tribological characteristics This book is a valuable resource to researchers and engineers involved with the modification of light alloy surfaces for the automotive and aeronautical industry.

Electron-Ion-Plasma Modification of a Hypoeutectoid Al-Si Alloy

by Dmitrii Zaguliaev Victor Gromov Sergey Konovalov Yurii Ivanov

Electron-Ion-Plasma Modification of a Hypereutectic Al-Si Alloy details theoretical and experimental research and computer simulation of structural phase transformations in AlSi10Mn2Ni Silumin on different scale levels under electroexplosion alloying, electron beam processing and electron-plasma alloying at the nanolevel in order to create new materials. The authors summarize and analyze more than 10 years of research on the electron-ion-plasma effect on strength properties and structure-phase states’ transformations of hypoeutectic Silumin. Key Features: Details physical and mathematical models of mechanisms of surface layer hardening under conditions of varying energy effects Offers insights into improved strength characteristics of Silumin Explores optimal processing modes for increased strength and improved tribological characteristics This book is a valuable resource to researchers and engineers involved with the modification of light alloy surfaces for the automotive and aeronautical industry.

Electron Kinetics and Applications of Glow Discharges (Nato Science Series B: #367)

by Uwe Kortshagen Lev D. Tsendin

This book resulted from the NATO Advanced Research Workshop on “Electron Kinetics and Applications of Glow Discharges,” held in St. Petersburg, Russia, on May 19-23, 1997. Glow discharges have found widespread applications in many technological processes from the manufacture of semiconductors, to recent developments in na- technology, to the traditional fields of gas lasers, and discharge lamps. Consequently, the interest in the physics of glow discharges has experienced yet another resurgence of interest. While the non-equilibrium character of glow discharges is widely accepted, the opinion still prevails that the main features can be captured by fluid models, and that kinetic treatments are only required for the understanding of subtle details. The erroneousness of this belief is demonstrated by the failure of fluid models to describe many basic features of glow discharges such as, for instance, electrode phenomena, striations, and collisionless heating effects. An adequate description of glow discharges thus has to be of kinetic nature.

Electron Lenses for Super-Colliders (Particle Acceleration and Detection)

by Vladimir D. Shiltsev

This book provides a comprehensive overview of the operating principles and technology of electron lenses in supercolliders. Electron lenses are a novel instrument for high energy particle accelerators, particularly for the energy-frontier superconducting hadron colliders, including the Tevatron, RHIC, LHC and future very large hadron colliders. After reviewing the issues surrounding beam dynamics in supercolliders, the book offers an introduction to the electron lens method and its application. Further chapters describe the technology behind the electron lenses which have recently been proposed, built and employed for compensation of beam-beam effects and for collimation of high-energy high-intensity beams, for compensation of space-charge effects and several other applications in accelerators. The book will be an invaluable resource for those involved in the design, construction and operation of the next generation of hadron colliders.

Electron Liquids (Springer Series in Solid-State Sciences #96)

by Akira Isihara

Press, Gordon & Breach Science Publishers, Inc. , and lOP Publishing Ltd. The author's original work in this book was supported by the National Science Foundation and the Office of Naval Research. Buffalo, NY A. Isihara July 1992 Preface The study of electronic properties reveals a common basis for a variety of systems, including gaseous plasmas, ionic solutions, metals, and semiconduc­ tors. This study started with one-electron properties in free space, as discussed in solid-state books. However, significant progress has been made recently in more realistic and complicated cases with interactions, confinements, im­ purities, and fields. Moreover, the recent discoveries of the quantum Hall ef­ fect, high-Tc superconductors, and localization phenomena, along with the in­ troduction of low-dimensional materials have opened new areas and have led to a tremendous number of articles in existing journals and even new specialized journals. This book has been written to provide a new, comprehen­ sive review on electronic properties in such diverse areas and materials. The title indicates emphasis on electron correlations. Chapter 1 starts with an introductory description of electron systems, including classification, characterization, and models. It provides the reader with a general account of the amazingly diverse electron systems. It is followed by discussions on strong­ ly coupled gaseous plasmas, electron-hole liquids, magnetic response, low­ dimensional systems, heavy Fermions, high-Tc superconductivity, localization, and the quantum Hall effect.

Electron Liquids (Springer Series in Solid-State Sciences #96)

by Akira Isihara

Several years have passed since the first edition of this book was published. During this period, significant developments in the study of electron systems have taken place, especially in the areas ofhigh-Tc superconductivity and the quantized Hall effect. These developments, and such fascinating subjects as crystallization and the stability of matter are included in the second edition. Bardstown, KY A.Isiham June 1997 Preface to the First Edition The study of electronic properties reveals a common basis for a variety of sys­ tems, including gaseous plasmas, ionic solutions, metals, and semiconductors. This study started with one-electron properties in free space, as discussed in solid-state books. However, significant progress has been made recently in more realistic and complicated cases with interactions, confinements, impu­ rities, and fields. Moreover, the recent discoveries of the quantum Hall effect, high-Tc superconductors, and localization phenomena, along with the intr~ duction of low-dimensional materials have opened new areas and have led to a tremendous number of articles in existing journals and even new specialized journals. This book has been written to provide a new, comprehensive review on electronic properties in such diverse areas and materials.

Electron Localization-Delocalization Matrices (Lecture Notes in Chemistry #112)

by Chérif F. Matta Ronald Cook Paul W. Ayers

This book builds bridges between two yet separated branches of theoretical and mathematical chemistry: Chemical Graph Theory and Electronic Structure Calculations. Although either of the fields have developed their own techniques, problems, methods, and favorite benchmark cases independent from each other, the authors have managed to bring them together by using the localization-delocalization matrix (LDM). The LDM is a novel molecular descriptor that fingerprints a molecule by condensing the complicated electronic information in one, mathematically manageable, object. In this book, the authors introduce the readers to modeling techniques based on LDMs. Their technique offers a high accuracy as well as robust predictive power, often dramatically surpassing the potential of either of the constituting methods on their own. In addition to the comprehensive and accessible introduction to this new field of theoretical chemistry, the authors offer their self-developed software free to download, so that readers can try running their own simulations. The described methods are very general and can easily be implemented for calculating various properties and parameters such as mosquito repelling activity, ionic liquid properties, local aromaticity of ring molecules, log P's, pKa's, LD50, corrosion inhibition activities, and Lewis acidities and basicities – to only name a few. The free downloadable software helps readers automate the analysis of the matrices described in this book and hence facilitates application of the described methodology.

The Electron Mass and Calcium Isotope Shifts: High-Precision Measurements of Bound-Electron g-Factors of Highly Charged Ions (Springer Theses)

by Florian Köhler-Langes

This thesis presents the first isotope-shift measurement of bound-electron g-factors of highly charged ions and determines the most precise value of the electron mass in atomic mass units, which exceeds the value in the literature by a factor of 13. As the lightest fundamental massive particle, the electron is one of nature’s few central building blocks. A precise knowledge of its intrinsic properties, such as its mass, is mandatory for the most accurate tests in physics - the Quantum Electrodynamics tests that describe one of the four established fundamental interactions in the universe. The underlying measurement principle combines a high-precision measurement of the Larmor-to-cyclotron frequency ratio on a single hydrogen-like carbon ion studied in a Penning trap with very accurate calculations of the so-called bound-electron g-factor. For the isotope-shift measurement, the bound-electron g-factors of two lithium-like calcium isotopes have been measured with relative uncertainties of a few 10^{-10}, constituting an as yet unrivaled level of precision for lithium-like ions.

Electron Microbeam Analysis (Mikrochimica Acta Supplementa #12)

by Abraham Boekestein Miodrag K. Pavicevic

This supplement of Mikrochimica Acta contains selected papers from the Second Workshop of the European Microbeam Analysis Society (EMAS) "Modern Developments and Applications in Microbeam Analysis", on which took place in May 1991 in Dubrovnik (Yugoslavia). EMAS was founded in 1987 by members from almost all European countries, in order to stimulate research, applications and development of all forms of microbeam methods. One of the most important activities EMAS is the organisation of biannual workshops for demonstrating the current status and developing trends of microbeam methods. For this meeting, EMAS chose to highlight the following topics: electron-beam microanalysis (EPMA) of thin films and quantitative analysis of ultra-light elements, Auger electron spectroscopy (AES), electron energy loss spec­ trometry (EELS), high-resolution transmission electron microscopy (HRTEM), quantitative analysis of biological samples and standard-less electron-beam microanalysis. Seven introductory lectures and almost seventy poster presentations were given by speakers from twelve European and two non-European (U.S.A. and Argentina) countries were made. One cannot assume that all fields of research in Europe were duly represented, but a definite trend is discernible. EPMA with wavelength-dispersive spectrometry (WDS) or energy-dispersive spectrometry (EDS) is the method with by far the widest range of applications, followed by TEM with EELS and then AES. There are also interesting suggestions for the further development of new appa­ ratus with new fields of application. Applications are heavily biased towards materials science (thin films in microelectronics and semicon­ ductors), ceramics and metallurgy, followed by analysis of biological and mineral samples.

Electron Microdiffraction

by J.M. Zuo J.C.H. Spence

Much of this book was written during a sabbatical visit by J. C. H. S. to the Max Planck Institute in Stuttgart during 1991. We are therefore grateful to Professors M. Ruhle and A. Seeger for acting as hosts during this time, and to the Alexander von Humbolt Foundation for the Senior Scientist Award which made this visit possible. The Ph. D. work of one of us (J. M. Z. ) has also provided much of the background for the book, together with our recent papers with various collaborators. Of these, perhaps the most important stimulus to our work on convergent-beam electron diffraction resulted from a visit to the National Science Foundation's Electron Microscopy Facility at Arizona State University by Professor R. H(lJier in 1988, and from a return visit to Trondheim by J. C. H. S. in 1990. We are therefore particularly grateful to Professor H(lJier and his students and co-workers for their encouragement and collaboration. At ASU, we owe a particular debt of gratitude to Professor M. O'Keeffe for his encouragement. The depth of his under­ standing of crystal structures and his role as passionate skeptic have frequently been invaluable. Professor John Cowley has also been an invaluable sounding board for ideas, and was responsible for much of the experimental and theoretical work on coherent nanodiffraction. The sections on this topic derive mainly from collaborations by J. C. H. S. with him in the seventies.

Electron Microscopical Investigation of Interdiffusion and Phase Formation at Gd2O3/CeO2- and Sm2O3/CeO2-Interfaces (MatWerk)

by Christian Rockenhäuser

Christian Rockenhäuser adresses phase formation and cation interdiffusion of the GdxCe1-xO2-x/2-and SmxCe1-xO2-x/2-material systems at temperatures ranging from 970 to 1270°C. Diffusion couples with CeO2/Sm2O3 and CeO2/Gd2O3 interfaces were fabricated for the investigations. The resulting reaction phases were investigated utilizing transmission electron microscopy (TEM) and allow conclusions regarding the phase diagrams in the examined temperature range. A miscibility gap can be ruled out for GdxCe1-xO2-x/2 across the whole composition range. Cation interdiffusion coefficients were determined for both material systems by measuring and evaluating concentration profiles at the material interfaces. The activation enthalpies for interdiffusion were calculated using the temperature dependence of the interdiffusion coefficients. The study for the first time compiles comprehensively the previous results regarding the phase diagrams of the two material systems since 1923.

Electron Microscopy: Methods and Protocols (Methods in Molecular Biology #369)

by John Kuo

This book presents the newest technology in electron microscopy. It comprises two major areas of electron microscopy - transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The volume provides clear, concise instructions on processing biological specimens and includes discussion on the underlying principles of the majority of the processes presented. A notes section enables efficient adaptation and troubleshooting of protocols.

Electron Microscopy: Methods and Protocols (Methods in Molecular Biology #1117)

by John Kuo

This third edition of Electron Microscopy: Methods and Protocols expands upon the previous editions with current, detailed protocols on biological and molecular research techniques based on TEM and SEM as well as other closely related imaging and analytical methods. With new chapters on conventional and microwave assisted specimen, cryo-specimen preparation, negative staining and immunogold labelling techniques, DNA and RNA tracking using hybrization in TEM or Atomic Force Microscopy, TEM crystallography and cryo TEM 3D tomography, 3D tomography of resin embedded tissues using FIB-SEM, Correlative microscopy using fluorescence microscopy, confocal microscopy or immune labelling techniques for both TEM and FIB-SEM and Elemental and isotopic identification and their distribution in cells and tissues using TEM, SEM, Scanning Transmission Electron Microscopy (STEM), Secondary Ion Mass Spectrometry (SIMS) and Nano SIMS. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls.Authoritative and practical, Electron Microscopy: Methods and Protocols, Third Edition provides the most up-to-date and essential information in electron microscopy techniques and methods provided in this edition will assist in advancing future molecular and biological research.

Electron Microscopy and Analysis 1997, Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference, University of Cambridge, 2-5 September 1997

by John M. Rodenburg

Electron Microscopy and Analysis 1997 celebrates the centenary anniversary of the discovery of the electron by J.J. Thomson in Cambridge and the fiftieth anniversary of this distinguished Institute group. The book includes papers on the early history of electron microscopy (from P. Hawkes), the development of the scanning electron microscope at Cambridge (from K. Smith), electron energy loss spectroscopy (from L.M. Brown), imaging methods (from J. Spence), and the future of electron microscopy (from C. Humphreys). Covering a wide range of applications of advanced techniques, it discusses electron imaging, electron energy-loss and x-ray analysis, and scanning probe and electron beam microscopies. This volume is a handy reference for professionals using microscopes in all areas of physics, materials science, metallurgy, and surface science to gain an overview of developments in our understanding of materials microstructure and of advances in microscope interrogation techniques.

Electron Microscopy and Analysis 1997, Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference, University of Cambridge, 2-5 September 1997

by John M. Rodenburg

Electron Microscopy and Analysis 1997 celebrates the centenary anniversary of the discovery of the electron by J.J. Thomson in Cambridge and the fiftieth anniversary of this distinguished Institute group. The book includes papers on the early history of electron microscopy (from P. Hawkes), the development of the scanning electron microscope at Cambridge (from K. Smith), electron energy loss spectroscopy (from L.M. Brown), imaging methods (from J. Spence), and the future of electron microscopy (from C. Humphreys). Covering a wide range of applications of advanced techniques, it discusses electron imaging, electron energy-loss and x-ray analysis, and scanning probe and electron beam microscopies. This volume is a handy reference for professionals using microscopes in all areas of physics, materials science, metallurgy, and surface science to gain an overview of developments in our understanding of materials microstructure and of advances in microscope interrogation techniques.

Electron Microscopy at Molecular Dimensions: State of the Art and Strategies for the Future (Proceedings in Life Sciences)

by W. Baumeister

If, ten years ago, one had been asked to comment on the prospects of peering into the fmest details of biomolecular organization, most electron microscopists would, I suppose at least, have been quite en­ thusiastic. When, during the early seventies, several groups were success­ ful in visualizing single heavy atoms, which undoubtedly was a techni­ cal triumph, this prompted the most sanguine expectations among bi­ ologists. In the following years, however, it began to transpire that radiation damage might impose limitations preventing us from taking full advantage of these exciting instrumental feasibilities. Fortunately, the radiation damage nightmare did no paralyze further activities, and it was in particular the work on the purple membrane which, brilliant­ ly exploiting the redundancy stratagem, revealed exhilarating new perspectives. Now, almost five years later, it seemed timely and appro­ priate to organize an international symposium to discuss and weight recent activities and current trends in "molecular microscopy". In planning this symposium, we selected topics according to our view of what is important or will deserve more attention in the near future. Taking into consideration suggestions made by the invited participants, some supplementary aspects were included; as a conse­ quence, the program developed somewhat beyond the scope as adum­ brated by the original title of this meeting (Regular 2-D Arrays of Biomacromolecules: Structure Determination and Assembly). As the meeting was organized, we had three morning sessions aimed at reflecting the "State ofthe Art".

Electron Microscopy in Forensic, Occupational, and Environmental Health Sciences

by Samarendra Basu James R. Millette

Forensic, Occupational and Environmental Health Sciences are identification sciences dealing with criminal and delicate societal problems for which scanning electron microscopy (SEM) with energy dispersive x-rays (EDAX) and analytical transmission electron microscopy (TEM) are providing increasingly definitive solutions. This is particularly true in the area of particulates. However, electron microscopists working independently in these three related fields are often called upon to identify particulates which have been well characterized by microscopists in one of the other fields of study. Exchange of information on particulate identification and techniques for analyzing new unusual samples has been difficult between the three disciplines. For example, automated search and identification of particulates has become a standard procedure in environmental and occupational health. The procedure, however, has yet to find its way into forensic laboratories for analysis of gunshot residue particles. This volume represents a beginning for collaboration and exchange of ideas between such areas of study with diverse interests but similar analytical problems. It is virtually certain that this effort will also interest other electron microscopists in some novel scientific problems with criminal and societal relevance. The volume presents full-length articles of several invited speakers and participants at the "Forensic, Occupational and Environmental Health Sciences" Symposium held as a part of the EMSA-MAS Joint Annual Meeting, 5-9 August 1985, Louisville, Kentucky. Extended 2-4 page abstracts of these presentations have been published in the EMSA Proceedings (1985).

Electron Microscopy in Mineralogy

by P. E. Champness H. R. Wenk J. M. Christie J. M. Cowley A. H. Heuer G. Thomas N. J. Tighe

During the last five years transmission electron microscopy (TEM) has added numerous important new data to mineralogy and has considerably changed its outlook. This is partly due to the fact that metallurgists and crystal physicists­ having solved most of the structural and crystallographic problems in metals­ have begun to show a widening interest in the much more complicated structures of minerals, and partly to recent progress in experimental techniques, mainly the availability of ion-thinning devices. While electron microscopists have become increasingly interested in minerals (judging from special symposia at recent meetings such as Fifth European Congress on Electron microscopy, Man­ chester 1972; Eight International Congress on Electron Microscopy, Canberra 1974) mineralogists have realized advantages of the new technique and applied it with increasing frequency. In an effort to coordinate the growing quantity of research, electron microscopy sessions have been included in meetings of mineralogists (e. g. Geological Society of America, Minneapolis, 1972, American Crystallographic Association, Berkeley, 1974). The tremendous response for the TEM symposium which H. -R. Wenk and G. Thomas organized at the Berkeley Conference of the American Crystallographic Association formed the basis for this book. It appeared useful at this stage to summarize the achievements of electron microscopy, scattered in many different journals in several different fields and present them to mineralogists. A group of participants as the Berkeley symposium formed an Editorial Committee and outlined the content of this book.

Electron Microscopy in Science and Engineering (IITK Directions #6)

by Krishanu Biswas Sri Sivakumar Nilesh Gurao

This issue of Direction focuses on the rapid proliferation of electron microscopy (EM) for scientific as well as technological research. The content written by leading experts is intended to provide the capabilities of EM facilities, set at Indian Institute of Technology (IIT) Kanpur to solve various problems and caters to the needs of both internal and external users. The book provides a detailed and comprehensive viewpoint of the basic features and advanced capabilities of EM facilities to the scientific community. A large number of electron microscopes have been installed and utilized by researchers across various engineering and science departments; hence, this volume provides both breadth as well as depth of various EM facilities available at the institute.

Electron Microscopy Methods and Protocols (Methods in Molecular Biology #117)

by M. A. Nasser Hajibagheri

Electron Microscopy Methods and Protocols is designed for the established researcher as a manual for extending knowledge of the field. It is also for the newcomer who wishes to move into the field. A wide range of applications for the examination of cells, tissues, biological macromolecules, molecular structures, and their interactions are discussed. We have tried to gather together methods that we consider to be those most generally appli- ble to current research in both cell and molecular biology. Each chapter c- tains a set of related practical protocols with examples provided by experts who have first-hand knowledge of the techniques they describe. The individual chapters are grouped according to similarities in their specimen preparation and methodology. Methods are presented in detail, in a step-by-step fashion, using reproducible protocols the authors have personally checked. During the last decade, the scientific literature describing the use of colloidal gold as an immunocytochemical marker has increased at an ex- nential rate, and this trend is expected to continue. We have included a large number of variations on the immunogold labeling technique. In both the ne- tive staining and cryo chapters, authors emphasize the “immunological app- cations” in order to correlate as fully as possible with the emphasis on immunogold labeling in the other chapters. Electron Microscopy Methods and Protocols commences with the routine preparation of biological material for classical transmission electron microscopy involving tissue fixation, embedding, and sectioning (Chap. 1).

Electron Microscopy of Interfaces in Metals and Alloys

by L.M Clarebrough

Electron Microscopy of Interfaces in Metals and Alloys examines the structure of interfaces in metals and alloys using transmission electron microscopy. The book presents quantitative methods of analysis and reviews the most significant work on interface structure over the last 20 years. It provides the first book description of the methods used for quantitative identification of Burgers vectors of interfacial dislocations, including the geometric analysis of periodicities in interface structure and the comparison of experimental and theoretical electron micrographs. The book explores low- and high-angle grain boundaries and interphase interfaces between neighboring grains, emphasizing interfacial dislocations and rigid-body displacements to the structure and properties of interfaces. It also analyzes the use of two-beam images and diffraction patterns for analysis and studies n-beam lattice imaging. The book includes numerous worked examples of the analysis of the structure of grain boundaries and interphase interfaces, which are particularly useful to those who need to consider the nature of intercrystalline interfaces.

Electron Microscopy of Interfaces in Metals and Alloys

by L.M Clarebrough

Electron Microscopy of Interfaces in Metals and Alloys examines the structure of interfaces in metals and alloys using transmission electron microscopy. The book presents quantitative methods of analysis and reviews the most significant work on interface structure over the last 20 years. It provides the first book description of the methods used for quantitative identification of Burgers vectors of interfacial dislocations, including the geometric analysis of periodicities in interface structure and the comparison of experimental and theoretical electron micrographs. The book explores low- and high-angle grain boundaries and interphase interfaces between neighboring grains, emphasizing interfacial dislocations and rigid-body displacements to the structure and properties of interfaces. It also analyzes the use of two-beam images and diffraction patterns for analysis and studies n-beam lattice imaging. The book includes numerous worked examples of the analysis of the structure of grain boundaries and interphase interfaces, which are particularly useful to those who need to consider the nature of intercrystalline interfaces.

Electron Microscopy of Nanotubes

by Zhong-lin Wang Chun Hui

Written by prominent scientists, this book is the first to specifically address the theory, techniques, and application of electron microscopy and associated techniques for nanotube research, a topic that is impacting a variety of fields, such as nanoelectronics, flat panel display, nanodevices, and novel instrumentation.

Refine Search

Showing 39,251 through 39,275 of 100,000 results