Browse Results

Showing 39,276 through 39,300 of 100,000 results

Electron-Molecule Collisions (Physics of Atoms and Molecules)

by Isao Shimamura Kazuo Takayanagi

Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiation physics, the physics of gas discharges, magnetohydrodynamic power generation, and so on. This book aims at introducing the reader to the problem of electron­ molecule collisions, elucidating the physics behind the phenomena, and review­ ing, to some extent, up-to-date important results. This book should be appropri­ ate for graduate reading in physics and chemistry. We also believe that investi­ gators in atomic and molecular physics will benefit much from this book.

Electron-Molecule Scattering and Photoionization (Physics of Atoms and Molecules)


This volume contains the invited papers and selected contributed papers presented at the International Symposium on 'Electron-Molecule Scattering and Photoionization' held at SERC's Daresbury Laboratory, Cheshire, England from 18th to 19th July, 1987. This Symposium was a Satellite Meeting to the XVth International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC I and follows a tradition of Satellite Meetings i. n related areas of collisions held in association with previous ICPEAC's. In order to make this volume as representative of the Symposium as possible 'Hot Topics' presented orally at the meeting together with a few papers selected by the Programme Committee from the contributed posters are included. The Editors are grateful to the authors for responding rapidly to the invitation to submit their contri­ butions for inclusion in the volume, as indeed they are grateful to all the authors for the high quality of their contributions. The Symposium brought together over 100 scientists from many countries and from broad interdisciplinary backgrounds to hear about current rapid advances in electron-molecule scatteri. ng and photoioniza­ tion. These advances have been stimulated on the experimental side by the increasing availability of electron beams with millivolt energy resolution, by synchrotron radiation sources and by intense tunable lasers. On the theoretical side the introduction of new computational methods enables accurate predictions to be made, resulting in a new and deeper understanding of the basic physical processes involved.

Electron Momentum Spectroscopy (Physics of Atoms and Molecules)

by Erich Weigold Ian McCarthy

This book gives a complete account of electron momentum spectroscopy to date. It describes in detail the construction of spectrometers and the acquisition and reduction of cross-section data, explaining the quantum theory of the reaction and giving experimental verification.

Electron Nano-Imaging: Basics of Imaging and Diffraction for TEM and STEM

by Nobuo Tanaka

In this book, the bases of imaging and diffraction in transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are explained in the style of a textbook. The book focuses on the explanation of electron microscopic imaging of TEM and STEM without including in the main text distracting information on basic knowledge of crystal diffraction, wave optics, electron lens, and scattering and diffraction theories, which are explained separately in the appendices. A comprehensive explanation is provided on the basis of Fourier transform theory, and this approach is unique in comparison with other advanced resources on high-resolution electron microscopy. With the present textbook, readers are led to understand the essence of the imaging theories of TEM and STEM without being diverted by other knowledge of electron microscopy. The up-to-date information in this book, particularly on imaging details of STEM and aberration corrections, is valuable worldwide for today’s graduate students and professionals just starting their careers.

Electron Nano-imaging: Basics of Imaging and Diffraction for TEM and STEM

by Nobuo Tanaka

In this second edition, most chapters of the first edition, which published in 2017, have been revised and recent advancement of electron microscopy such as differential phase contrast (DPC) STEM, sparse-coding image processing and quantum electron microscopy have been supplemented with further details. This book explains the basis of imaging and diffraction in transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in the style of a textbook. The book focuses on the explanation of electron microscopic imaging of TEM and STEM without including in the main text distracting information on basic knowledge of crystal diffraction, wave optics, electron lens, and scattering and diffraction theories, which are explained separately in the appendices. The comprehensive explanation is provided on the basis of Fourier transform theory, and this approach is unique in comparison with other advanced resources on high-resolution electron microscopy. With the present textbook, readers are led to understand the essence of the imaging theories of TEM and STEM without being diverted by various kinds of knowledge around electron microscopy. The up-to-date information in this book, particularly on imaging details of STEM and aberration corrections, is valuable worldwide for today’s graduate students and professionals just starting their careers.

Electron & Nuclear Spin Dynamics in Semiconductor Nanostructures (Series on Semiconductor Science and Technology #23)

by M. M. Glazov

In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, the solid state systems, particularly, semiconductors and semiconductor nanosystems, allow us to perform benchtop studies of quantum and relativistic phenomena. On the other hand, this interest is supported by the prospects of realizing spin-based electronics, where the electron or nuclear spins may play a role of quantum or classical information carriers. This book looks in detail at the physics of interacting systems of electron and nuclear spins in semiconductors, with particular emphasis on low-dimensional structures. These two spin systems naturally appear in practically all widespread semiconductor compounds. The hyperfine interaction of the charge carriers and nuclear spins is particularly prominent in nanosystems due to the localization of the charge carriers, and gives rise to spin exchange between these two systems and a whole range of beautiful and complex physics of manybody and nonlinear systems. As a result, understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and controlling the spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and spin-Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focussing, as well as fluctuations of electron and nuclear spins.

Electron Numbers in different elements (contracted)

by Rnib

This diagram shows the atom and electrons for different elements. They are: Sodium, magnesium, aluminium, silicon, phosphorous, sulphur, chlorine and argon.

Electron Paramagnetic Resonance: A Practitioners Toolkit

by Marina Brustolon Elio Giamello

This book offers a pragmatic guide to navigating through the complex maze of EPR/ESR spectroscopy fundamentals, techniques, and applications. Written for the scientist who is new to EPR spectroscopy, the editors have prepared a volume that de-mystifies the basic fundamentals without weighting readers down with detailed physics and mathematics, and then presents clear approaches in specific application areas. The first part presents basic fundamentals and advantages of electron paramagnetic resonance spectrscopy. The second part explores severalapplication areas including chemistry, biology, medicine, materials and geology. A frequently-asked-questions sections focuses on practicalquestions, such as the size of sample, etc. It's an ideal, hands-on reference for chemists and researchers in the pharmaceutical and materials (semiconductor) industries who are looking for a basic introduction to EPR spectroscopy.

Electron Paramagnetic Resonance: Elementary Theory and Practical Applications

by John A. Weil James R. Bolton

This book provides an introduction to the underlying theory, fundamentals, and applications of EPR spectroscopy, as well as new developments in the area. Knowledge of the topics presented will allow the reader to interpret of a wide range of EPR spectra, as well as help them to apply EPR techniques to problem solving in a wide range of areas: organic, inorganic, biological, and analytical chemistry; chemical physics, geophysics, and minerology. Includes updated information on high frequency and multi-frequency EPR, pulsed microwave techniques and spectra analysis, dynamic effects, relaxation phenomena, computer-based spectra simulation, biomedical aspects of EPR, and more Equips readers with sufficient knowledge of EPR techniques to go on in their specialized area of interest Provides problem sets and concise bibliographies at the end of each chapter, plus several tutorial appendices on topics like mathematical operations, quantum mechanics of angular momentum, experimental considerations.

Electron Paramagnetic Resonance in Biochemistry and Medicine (Topics in Applied Chemistry)

by Rafik Galimzyanovich Sajfutdinov Lyudmila Ivanovna Larina Tamara Il'inichna Vakul'skaya Mikhail Grigor'evich Voronkov

Electron Paramagnetic Resonance (EPR) spectroscopy - also sometimes termed Electron Spin Resonance spectroscopy - has manifold potential uses in biochemistry and medicine. The paramount importance of EPR spectroscopy applied to biological tissues and fluids is that it identifies the changes in redox processes that contribute to disease. EPR spectroscopy has come a long way from its original use to detect malignant tumors. For example, the development and later refinement of methods of low-temperature registration of biological tissues widened the scope of EPR spectroscopy. Innovations made possible by the introduction of spin labels, probes, and traps made EPR spectroscopy ever more applicable to biochemistry and medicine, to the point where in vivo studies are being carefully considered. This comprehensive book discusses spectra of many tissues and bodily fluids, and the quantitative nature of paramagnetic centers in both normal individuals and patients suffering from a variety of diseases. Special attention is given to the EPR examination of bio-molecules, such as enzymes, polypeptides, vitamins, lipids, hydrocarbons, etc., which play an essential role in human activity. This book will be of great interest to physicians specializing in many different areas. Similarly, biologists, biochemists, biophysicists, and chemists will find this book very useful. It has also been written so that it may be used as a textbook at graduate level.

Electron Paramagnetic Resonance of Exchange Coupled Systems

by Alessandro Bencini Dante Gatteschi

This book is intended to collect in one place as much information as possible on the use of EPR spectroscopy in the analysis of systems in which two or more spins are magnetically coupled. This is a field where research is very active and chemists are elbow-to-elbow with physicists and biologists in the forefront. Here, as in many other fields, the contributions coming from different disciplines are very important, but for active researchers it is sometimes difficult to follow the literature, due to differences in languages, and sources which are familiar to, e. g. , a physicist, are exotic to a chemist. Therefore, an effort is needed in order to provide a unitary description of the many different phenomena which are collected under the title. In order to define the arguments which are treated, it is useful to state clearly what is not contained here. So we do not treat magnetic phenomena in conductors and we neglect ferro- and antiferromagnetic resonance. The basic foundations of EPR spectroscopy are supposed to be known by the reader, while we introduce the basis of magnetic interactions between spins. In the first two chapters we review the foundations of exchange interactions, trying to show how the magnetic parameters are bound to the electronic structure of the interacting centers.

Electron Paramagnetic Resonance Spectroscopy: Fundamentals

by Patrick Bertrand

Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.

Electron Paramagnetic Resonance Spectroscopy: Applications

by Patrick Bertrand

This book shows how the fundamentals of electron paramagnetic resonance (EPR) spectroscopy are practically implemented and illustrates the diversity of current applications. The technique is used at various levels, and applications are presented in order of increasing difficulty, with reference to theoretically obtained results. This book features a diverse array of application examples, from fields such as ionizing radiation dosimetry, neurodegenerative diseases, structural transitions in proteins, and the origins of terrestrial life. The final chapter of this book highlights the principles and applications of the technique of ferromagnetic resonance spectroscopy, followed by a brief introduction to advanced EPR techniques such as electron spin echo envelope modulation (ESEEM), hyperfine sub-level correlation (HYSCORE), pulsed electron-electron double resonance (PELDOR), and continuous wave electron nuclear double resonance (ENDOR) experiments.

Electron-Phonon Interaction in Conventional and Unconventional Superconductors (Springer Theses)

by Pegor Aynajian

The problem of conventional, low-temperature superconductivity has been regarded as solved since the seminal work of Bardeen, Cooper, and Schrieffer (BCS) more than 50 years ago. However, the theory does not allow accurate predictions of some of the most fundamental properties of a superconductor, including the superconducting energy gap on the Fermi surface. This thesis describes the development and scientific implementation of a new experimental method that puts this old problem into an entirely new light. The nominee has made major contributions to the development and implementation of a new experimental method that enhances the resolution of spectroscopic experiments on dispersive lattice-vibrational excitations (the "glue" responsible for Cooper pairing of electrons in conventional superconductors) by more than two orders of magnitude. Using this method,he has discovered an unexpected relationship between the superconducting energy gap and the geometry of the Fermi surface in the normal state, both of which leave subtle imprints in the lattice vibrations that could not be resolved by conventional spectroscopic methods. He has confirmed this relationship on two elemental superconductors and on a series of metallic alloys. This indicates that a mechanism qualitatively beyond the standard BCS theory determines the magnitude and anisotropy of the superconducting gap.

Electron-Phonon Interactions and Phase Transitions (Nato Science Series B: #29)

by T. Riste

This NATO Advanced Study Institute was the fourth in a series devoted to the subject of phase transitions and instabilities with particular attention to structural phase transforma~ions. Beginning wi th the first Geilo institute in 19'(1 we have seen the emphasis evolve from the simple quasiharmonic soft mode description within the Landau theory, through the unexpected spectral structure re­ presented by the "central peak" (1973), to such subjects as melting, turbulence and hydrodynamic instabilities (1975). Sophisticated theoretical techniques such as scaling laws and renormalization group theory developed over the same period have brought to this wide range of subjects a pleasing unity. These institutes have been instrumental in placing structural transformations clearly in the mainstream of statistical physics and critical phenomena. The present Geilo institute retains some of the counter cul­ tural flavour of the first one by insisting whenever possible upon peeking under the skirts of even the most successful phenomenology to catch a glimpse of the underlying microscopic processes. Of course the soft mode remains a useful concept, but the major em­ phasis of this institute is the microscopic cause of the mode softening. The discussions given here illustrate that for certain important classes of solids the cause lies in the electron phonon interaction. Three major types of structural transitions are considered. In the case of metals and semimetals, the electron phonon interaction relie6 heavily on the topology of the Fermi surface.

Electron-Photon Cascades: A Probabilistic Point of View (Nonlinear Physical Science)

by Vladimir V. Uchaikin

This book demonstrates the practical application of an alternative approach to current problems in high-energy astrophysics. In high-energy astrophysical processes, single collisions are accompanied by the appearance of many secondary particles with different properties. To describe the infinitesimal evolution of such a system at a measurement instant, as is commonly done when deriving the kinetic equation for the system with conserved number of particles, one must know either its prehistory or the infinite family of many-particle distributions. An alternative to this approach is to use an adjoint (in the sense of Lagrange) mathematical formalism, where the independent active variable is the phase position of a primary particle generating the cascade, and the dependent variable has the form of a functional of the cascade as a whole, interpreted as the reading of some not necessarily linear (additive) detector. This approach is characterized by mathematical efficiency: no matter how many particles are formed in a cascade, the active argument of the desired functional always remains one particle. The second advantage is its generality: the formalization of the readings of the detector, which performs real measurements through the functionality of a random implementation of the cascade, allows it to be applied to a wide range of actually used devices and installations.Readers will be able to master the fundamentals of particle astrophysics in the context of the latest developments in the field. It will benefit graduate students and established researchers alike, equipping them with the knowledge and tools necessary to design and interpret their own experiments and, ultimately, to address a number of questions about the nature and origin of cosmic particles that have arisen in recent research.

Electron-Photon Interaction in Dense Media (NATO Science Series II: Mathematics, Physics and Chemistry #49)

by Helmut Wiedemann

A comprehensive survey of recent theoretical and experimental progress in the area of electron-photon interaction and dense media. A state-of-the-art discussion of radiation production, with descriptions of new ideas and technologies that enhance the production of X-rays in the form of channelling, transition and parametric X-ray production. Progress in electron beam physics to produce sub-picosecond electron bunches from low-energy linear accelerators make it possible to produce coherent, high brightness, submillimeter radiation and sub-picosecond X-ray pulses. Micro-undulators in the form of bent crystalline structures hold great promise as future X-ray sources.

Electron Probe Microanalysis: Applications in Biology and Medicine (Springer Series in Biophysics #4)

by Karl Zierold Herbert K. Hagler

The aim of electron probe microanalysis of biological systems is to identify, localize, and quantify elements, mass, and water in cells and tissues. The method is based on the idea that all electrons and photons emerging from an electron beam irradiated specimen contain information on its structure and composition. In particular, energy spectroscopy of X-rays and electrons after interaction of the electron beam with the specimen is used for this purpose. However, the application of this method in biology and medicine has to overcome three specific problems: 1. The principle constituent of most cell samples is water. Since liquid water is not compatible with vacuum conditions in the electron microscope, specimens have to be prepared without disturbing the other components, in parti­ cular diffusible ions (elements). 2. Electron probe microanaly­ sis provides physical data on either dry specimens or fully hydrated, frozen specimens. This data usually has to be con­ verted into quantitative data meaningful to the cell biologist or physiologist. 3. Cells and tissues are not static but dynamic systems. Thus, for example, microanalysis of physiolo­ gical processes requires sampling techniques which are adapted to address specific biological or medical questions. During recent years, remarkable progress has been made to overcome these problems. Cryopreparation, image analysis, and electron energy loss spectroscopy are key areas which have solved some problems and offer promise for future improvements.

Electron Probe Quantitation

by K. F. J. Heinrich D. Newbury

In 1968, the National Bureau of Standards (NBS) published Special Publication 298 "Quantitative Electron Probe Microanalysis," which contained proceedings of a seminar held on the subject at NBS in the summer of 1967. This publication received wide interest that continued through the years far beyond expectations. The present volume, also the result of a gathering of international experts, in 1988, at NBS (now the National Institute of Standards and Technology, NIST), is intended to fulfill the same purpose. After years of substantial agreement on the procedures of analysis and data evaluation, several sharply differentiated approaches have developed. These are described in this publi­ cation with all the details required for practical application. Neither the editors nor NIST wish to endorse any single approach. Rather, we hope that their exposition will stimulate the dialogue which is a prerequisite for technical progress. Additionally, it is expected that those active in research in electron probe microanalysis will appreciate more clearly the areas in which further investigations are warranted.

Electron Scattering: From Atoms, Molecules, Nuclei and Bulk Matter (Physics of Atoms and Molecules)

by Colm T. Whelan Nigel J. Mason

There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.

Electron Scattering in Solid Matter: A Theoretical and Computational Treatise (Springer Series in Solid-State Sciences #147)

by Jan Zabloudil Robert Hammerling Lászlo Szunyogh Peter Weinberger

Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the screened Korringa-Kohn-Rostoker method are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties related to the (single-particle) Green's function, such as magnetic anisotropies, interlayer exchange coupling, electric and magneto-optical transport and spin-waves, serve to illustrate the usefulness of the methods described.

Electron Shells (tactile)

by Rnib

This diagram shows an atom with its electron shells labelled.

Electron Spectroscopies Applied to Low-Dimensional Structures (Physics and Chemistry of Materials with Low-Dimensional Structures #24)

by H. P. Hughes H. Starnberg

The effect of reduced dimensionality, inherent at the crystallographic level, on the electronic properties of low dimensional materials can be dramatic, leading to structural and electronic instabilities—including supercond- tivity at high temperatures, charge density waves, and localisation—which continue to attract widespread interest. The layered transition metal dichalcogenides have engaged attention for many years, partly arising from the charge density wave effects which some show and the controlled way in which their properties can be modified by intercalation, while the development of epitaxial growth techniques has opened up promising areas based on dichalcogenide heterostructures and quantum wells. The discovery of high-temperature superconducting oxides, and the realisation that polymeric materials too can be exploited in a controlled way for various opto-electronic applications, have further sti- lated interest in the effects of structural dimensionality. It seems timely therefore to draw together some strands of recent research involving a range of disparate materials which share some common char- teristics of low dimensionality. This resulting volume is aimed at researchers with specialist interests in the particular materials discussed but who may also wish to examine the related phenomena observed in different systems, and at a more general solid state audience with broad interests in electronic properties and low dimensional phenomena. Space limitations have required us to be selective as regards particular materials, though we have managed to include those as dissimilar as polymeric semiconductors, superconducting oxides, bronzes and layered chalcogenides.

Electron Spectroscopy for Surface Analysis (Topics in Current Physics #4)

by J. D. Carette B. Feuerbacher B. Fitton H. Froitzheim M. Henzler H. Ibach J. Kirschner D. Roy

The development of surface physics and surface chemistry as a science is closely related to the technical development of a number of methods involving electrons either as an excitation source or as an emitted particle carrying characteristic information. Many of these various kinds of electron spectroscopies have become commercially available and have made their way into industrial laboratories. Others are still in an early stage, but may become of increasing importance in the future. In this book an assessment of the various merits and possible drawbacks of the most frequently used electron spectroscopies is attempted. Emphasis is put on prac­ tical examples and experimental design rather than on theoretical considerations. The book addresses itself to the reader who wishes to know which electron spectroscopy or which combination of different electron spectroscopies he may choose for the particular problems under investigation. After a brief introduction the practical design of electron spectrometers and their figures of merit important for the different applications are discussed in Chapter 2. Chapter 3 deals with electron excited electron spectroscopies which are used for the elemental analysis of surfaces. Structure analysis by electron diffrac­ tion is described in Chapter 4 with special emphasis on the use of electron diffrac­ tion for the investigation of surface imperfections. For the application of electron diffraction to surface crystallography in general, the reader is referred to Volume 4 of "Topics in Applied Physics".

Refine Search

Showing 39,276 through 39,300 of 100,000 results