Browse Results

Showing 39,776 through 39,800 of 100,000 results

Elementary Introduction to Spatial and Temporal Fractals (Lecture Notes in Chemistry #55)

by L.T. Fan D. Neogi M. Yashima

Fractals play an important role in modeling natural phenomena and engineering processes. And fractals have a close connection to the concepts of chaotic dynamics. This monograph presents definitions, concepts, notions and methodologies of both spatial and temporal fractals. It addresses students and researchers in chemistry and in chemical engineering. The authors present the concepts and methodologies in sufficient detail for uninitiated readers. They include many simple examples and graphical illustrations. They outline some examples in more detail: Perimeter fractal dimension of char particles, surface fractal dimension of charcoal; fractal analysis of pressure fluctuation in multiphase flow systems. Readers who master the concepts in this book, can confidently apply them to their fields of interest.

Elementary Lectures in Statistical Mechanics (Graduate Texts in Contemporary Physics)

by George D.J. Phillies

This textbook for graduates and advanced undergraduates in physics and physical chemistry covers the major areas of statistical mechanics and concludes with the level of current research. It begins with the fundamental ideas of averages and ensembles, focusing on classical systems described by continuous variables such as position and momentum, and using the ideal gas as an example. It then turns to quantum systems, beginning with diatomic molecules and working up through blackbody radiation and chemical equilibria. The discussion of equilibrium properties of systems of interacting particles includes such techniques as cluster expansions and distribution functions and uses non-ideal gases, liquids, and solutions. Dynamic behavior -- treated here more extensively than in other texts -- is discussed from the point of view of correlation functions. The text concludes with the problem of diffusion in a suspension of interacting hard spheres and what can be learned about such a system from scattered light. Intended for a one-semester course, the text includes several "asides" on topics usually omitted from introductory courses, as well as numerous exercises.

Elementary Mechanics Using Matlab: A Modern Course Combining Analytical and Numerical Techniques (Undergraduate Lecture Notes in Physics)

by Anders Malthe-Sørenssen

This book – specifically developed as a novel textbook on elementary classical mechanics – shows how analytical and numerical methods can be seamlessly integrated to solve physics problems. This approach allows students to solve more advanced and applied problems at an earlier stage and equips them to deal with real-world examples well beyond the typical special cases treated in standard textbooks.Another advantage of this approach is that students are brought closer to the way physics is actually discovered and applied, as they are introduced right from the start to a more exploratory way of understanding phenomena and of developing their physical concepts.While not a requirement, it is advantageous for the reader to have some prior knowledge of scientific programming with a scripting-type language. This edition of the book uses Matlab, and a chapter devoted to the basics of scientific programming with Matlab is included. A parallel edition using Python instead of Matlab is also available.Last but not least, each chapter is accompanied by an extensive set of course-tested exercises and solutions.

Elementary Mechanics Using Python: A Modern Course Combining Analytical and Numerical Techniques (Undergraduate Lecture Notes in Physics)

by Anders Malthe-Sørenssen

This book – specifically developed as a novel textbook on elementary classical mechanics – shows how analytical and numerical methods can be seamlessly integrated to solve physics problems. This approach allows students to solve more advanced and applied problems at an earlier stage and equips them to deal with real-world examples well beyond the typical special cases treated in standard textbooks.Another advantage of this approach is that students are brought closer to the way physics is actually discovered and applied, as they are introduced right from the start to a more exploratory way of understanding phenomena and of developing their physical concepts.While not a requirement, it is advantageous for the reader to have some prior knowledge of scientific programming with a scripting-type language. This edition of the book uses Python, and a chapter devoted to the basics of scientific programming with Python is included. A parallel edition using Matlab instead of Python is also available.Last but not least, each chapter is accompanied by an extensive set of course-tested exercises and solutions.

Elementary Particle Physics: The Standard Theory

by John Iliopoulos Theodore N. Tomaras

Since the development of natural philosophy in Ancient Greece, scientists have been concerned with determining the nature of matter's smallest constituents and the interactions among them. This textbook examines the question of the microscopic composition of matter through an accessible introduction to what is now called 'The Physics of Elementary Particles'. In the last few decades, elementary particle physics has undergone a period of transition, culminating in the formulation of a new theoretical scheme, known as 'The Standard Model', which has profoundly changed our understanding of nature's fundamental forces. Rooted in the experimental tradition, this new vision is based on geometry and sees the composition of matter in terms of its accordance with certain geometrical principles. This textbook presents and explains this modern viewpoint to a readership of well-motivated undergraduate students, by guiding the reader from the basics to the more advanced concepts of Gauge Symmetry, Quantum Field Theory and the phenomenon of spontaneous symmetry breaking through concrete physical examples. This engaging introduction to the theoretical advances and experimental discoveries of the last decades makes this fascinating subject accessible to undergraduate students and aims at motivating them to study it further.

Elementary Particle Physics: Concepts and Phenomena (Theoretical and Mathematical Physics)

by Otto Nachtmann

This book grew-how could it be otherwise?-out of a series oflectures which the author held at the University of Heidelberg. The purpose ofthese lectures was to give an introduction to the phenomenology of elementary particles for students both of theoretical and experimental orientation. With the present book the author has set himself the same aim. The reader is assumed to be familiar with ordinary nonrelativistic quantum mechanics as presented, e.g., in the following books: Quantum Mechanics, by L.1. Schiff (McGraw-Hill, New York, 1955); Quantum Mechanics, Vol. I, by K. Gottfried (W.A. Benjamin, Reading, Ma., 1966). The setup of the present book is as follows. In the first part we present some basic general principles and concepts which are used in elementary particle physics. The reader is supposed to learn here the "language" of particle physics. An introductory chapter deals with special relativity, of such funda­ mental importance for particle physics, which most ofthe time is high energy, i.e., highly relativistic physics. Further chapters of this first part deal with the Dirac equation, with the theory of quantized fields, and with the general definitions of the scattering and transition matrices and the cross-sections.

Elementary Particle Physics: Foundations of the Standard Model V2

by Yorikiyo Nagashima

This second volume of Elementary Particle Physics, "Foundations of the Standard Model", concentrates on the main aspects of the Standard Model by addressing developments from its establishments to recent progress and some future prospects. Two subjects are clearly separated which cover dynamics of the electroweak and strong interactions, but basso continuo throughout the book is a bridge between theory and experiments. All the basic formulas are derived from the first principle, and corrections to meet the experimental accuracy are explained. This volume is a logical step up from volume I but can also be considered and used as an independent monograph for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics.

Elementary Particle Physics: Foundations of the Standard Model V2

by Yorikiyo Nagashima

This second volume of Elementary Particle Physics, "Foundations of the Standard Model", concentrates on the main aspects of the Standard Model by addressing developments from its establishments to recent progress and some future prospects. Two subjects are clearly separated which cover dynamics of the electroweak and strong interactions, but basso continuo throughout the book is a bridge between theory and experiments. All the basic formulas are derived from the first principle, and corrections to meet the experimental accuracy are explained. This volume is a logical step up from volume I but can also be considered and used as an independent monograph for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics.

Elementary Particle Physics: Quantum Field Theory and Particles V1

by Yorikiyo Nagashima

Meeting the need for a coherently written and comprehensive compendium combining field theory and particle physics for advanced students and researchers, this book directly links the theory to the experiments. It is clearly divided into two sections covering approaches to field theory and the standard model, and rounded off with numerous useful appendices. A timely volume for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics. Volume 2 concentrates on the main aspects of the Standard Model by addressing its recent developments and future prospects. Furthermore, it gives some thought to intriguing ideas beyond the Standard Model, including the Higgs boson, the neutrino, the concepts of the Grand Unified Theory and supersymmetry, axions, and cosmological developments.

Elementary Particle Physics: Quantum Field Theory and Particles V1

by Yorikiyo Nagashima

Meeting the need for a coherently written and comprehensive compendium combining field theory and particle physics for advanced students and researchers, this book directly links the theory to the experiments. It is clearly divided into two sections covering approaches to field theory and the standard model, and rounded off with numerous useful appendices. A timely volume for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics. Volume 2 concentrates on the main aspects of the Standard Model by addressing its recent developments and future prospects. Furthermore, it gives some thought to intriguing ideas beyond the Standard Model, including the Higgs boson, the neutrino, the concepts of the Grand Unified Theory and supersymmetry, axions, and cosmological developments.

Elementary Particle Physics: Multiparticle Aspects (Few-Body Systems #9/1972)

by Paul Urban

The observation of the scaling properties of the structure functions w and vw of deep inelastic electron 1 2 nucleon scattering [1]+ has been taken by many people as an indication for an approximate scale invariance of the world. It was pointed out by Wilson [2], that in many field theories it is possible to assign a dimension d to every fundamental field, which proves to be a conserved quantum number as far as the most singular term of an operator product expansion at small distances ((x-y) +a) is con- JJ cerned++. Later it was shown, at the canonical level, that in many field theories the dimension of a field seems to be a c:pod quantum number even in the terms less singular at small (x-y) , as long as they all belong to the strongest \l light cone singularity (i. e. (x-y)2+a) [3]. The assumption that this type of scale invariance on the light cone be present in the operator product ex­ pansion of two electromagnetic currents has provided us with a rather natural explanation of the observed scaling phenomena. We should like to mention, however, that this ex­ planation cannot account for the precocity with which scaling is being observed experimentally in energy regions, in which resonances still provide prominent contributions to the final states [4].

Elementary Particle Physics in a Nutshell

by Christopher G. Tully

The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs. Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged from a course at Princeton University, also provides a comprehensive understanding of the subject. It explains every elementary particle physics process--whether it concerns nonaccelerator experiments, particle astrophysics, or the description of the early universe--as a gauge interaction coupled to the known building blocks of matter. Designed for a one-semester course that is complementary to a course in quantum field theory, the book gives special attention to high-energy collider physics, and includes a detailed discussion of the state of the search for the Higgs boson. Introduces elementary particle processes relevant to astrophysics, collider physics, and the physics of the early universe Covers experimental methods, detectors, and measurements Features a detailed discussion of the Higgs boson search Includes many challenging exercises Professors: A supplementary Instructor's Manual which provides solutions for Chapters 1-3 of the textbook, is available as a PDF. It is restricted to teachers using the text in courses. To obtain a copy, please email your request to: Ingrid_Gnerlich "at" press.princeton.edu.

Elementary Particle Physics in a Nutshell

by Christopher G. Tully

The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs. Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged from a course at Princeton University, also provides a comprehensive understanding of the subject. It explains every elementary particle physics process--whether it concerns nonaccelerator experiments, particle astrophysics, or the description of the early universe--as a gauge interaction coupled to the known building blocks of matter. Designed for a one-semester course that is complementary to a course in quantum field theory, the book gives special attention to high-energy collider physics, and includes a detailed discussion of the state of the search for the Higgs boson. Introduces elementary particle processes relevant to astrophysics, collider physics, and the physics of the early universe Covers experimental methods, detectors, and measurements Features a detailed discussion of the Higgs boson search Includes many challenging exercises Professors: A supplementary Instructor's Manual which provides solutions for Chapters 1-3 of the textbook, is available as a PDF. It is restricted to teachers using the text in courses. To obtain a copy, please email your request to: Ingrid_Gnerlich "at" press.princeton.edu.

Elementary Particle Theories: Proceedings of the V. Internationale Universitätswochen für Kernphysik 1966 der Karl-Franzens-Universität Graz, at Schladming (Steiermark, Austria) 24th February–9th March 1966 (Few-Body Systems #3/1966)

by Paul Urban

The great success of the experimental research on elementary particles and their qualities during the last years suggests giving a summary of the present situation also in the theoretical description of this important branch of physics. In spite of the precarious situation in this field of theoretical physics I believe I can fully account for this choice and must see that the number of participants and the general interest justify my opinion. In organizing the proceedings it was our prime concern to reduce the delay in editing and also keep down the price. This was possihle only through the assistance of the Springer-Verlag who chose photomechanical method working quicker and cheaper. Therefore we apologize for any mistakes and errors that may occur in the text and formulae. I am very indebted to my secretary, Miss A. SCHMALDIENST and one of my assistants, Dr. H. KÜHNELT, who did an the typing and correcting of the manu­ scripts with great patience and knowledge.

Elementary Particles: Mathematics, Physics and Philosophy (Fundamental Theories of Physics #34)

by Kobzarev Y.I. Manin

This book has come into being as a result of scientific debates. And these debates have determined its structure. The first chapter is in the form of Socratic dialogues between a mathematician (MATH.), two physicists (pHYS. and EXP.) and a philosopher (PHIL.). However, although one of the authors is a theoretical physicist and the other a mathematician, the reader must not think that their opinions have been divided among the participants of the dialogues. We have tried to convey the inner tension of the topic under discussion and its openness. The attitudes of the participants reflect more the possible evaluations of the situation rather than the actual views of the authors. What is more, the subject "elementary particles" as dealt with in the 3 6 dialogue stretches over (2-3) 10 years of historical time and a space of 10 ±1 pages of scientific literature. For this reason, a complete survey of it is un­ achievable. But, of course, every researcher constructs his own history of his science and sees a certain list of its main pOints. We have attempted to float several possible pictures of this kind. Therefore the fact that Math and Phys talk about the history of element­ ary particles is not an attempt to present the scientific history of this realm of physics.

Elementary Particles

by Chen Ning Yang

Dr. Yang reviews the history of our knowledge of the elementary particles, and shows how theory and experiment interact to extend human knowledge.Originally published in 1961.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Elementary Particles and the Early Universe: A Synergy of Particle Physics and Cosmology in the Birth and Evolution of the Universe

by Eitan Abraham Andrés J. Kreiner

The birth of the Universe, and its subsequent evolution, is an exciting blend of Cosmology, Particle Physics and Thermodynamics. This book, with its synoptic approach, provides an accessible introduction to these fascinating topics. It begins in Part I with an overview of cosmology and is followed by a discussion on the present understanding about the birth of the universe, detailing the Planck Era, Inflation, and the Big Bang. It speculates the possibility of multiple universes. Before moving on to explore the essentials of the Standard Model of Particle Physics in Part II, with particular stress on the electroweak force, the first example of acquisition of mass by gauge bosons via the Higgs mechanism. The book finishes in Part III with the thermal history of the Universe. This will also lead to understanding baryonic matter and baryogenesis as well as nucleosynthesis This book is suitable for those taking courses on particle physics, general relativity, and cosmology. Readers mathematically inclined who wish to enhance their basic knowledge about the early Universe, will also find this book suitable to move up to the next level. Features: Authored by experienced lecturers in Particle Physics, Quantum Field Theory, Nuclear Physics, and General Relativity Provides an accessible introduction to Particle Physics and Cosmology

Elementary Particles and the Early Universe: A Synergy of Particle Physics and Cosmology in the Birth and Evolution of the Universe

by Eitan Abraham Andrés J. Kreiner

The birth of the Universe, and its subsequent evolution, is an exciting blend of Cosmology, Particle Physics and Thermodynamics. This book, with its synoptic approach, provides an accessible introduction to these fascinating topics. It begins in Part I with an overview of cosmology and is followed by a discussion on the present understanding about the birth of the universe, detailing the Planck Era, Inflation, and the Big Bang. It speculates the possibility of multiple universes. Before moving on to explore the essentials of the Standard Model of Particle Physics in Part II, with particular stress on the electroweak force, the first example of acquisition of mass by gauge bosons via the Higgs mechanism. The book finishes in Part III with the thermal history of the Universe. This will also lead to understanding baryonic matter and baryogenesis as well as nucleosynthesis This book is suitable for those taking courses on particle physics, general relativity, and cosmology. Readers mathematically inclined who wish to enhance their basic knowledge about the early Universe, will also find this book suitable to move up to the next level. Features: Authored by experienced lecturers in Particle Physics, Quantum Field Theory, Nuclear Physics, and General Relativity Provides an accessible introduction to Particle Physics and Cosmology

Elementary Particles and Their Interactions: Concepts and Phenomena

by Quang Ho-Kim Xuan-Yem Pham

The first part of this two-part work is intended as an introduction to the fundamentals, while the second part discusses applications from the point of view of the researcher. Lively illustrations and informative tables, an overview at the beginning of each chapter and exercises with solutions make this book a valuable resource.

Elementary Particles and Their Interactions (Graduate Texts in Physics)

by Stephen P. Martin James D. Wells

The Standard Model of elementary particle physics was tentatively outlined in the early 1970s. The concepts of quarks, leptons, neutrinos, gauge symmetries, chiral interactions, Higgs boson, strong force, weak force, and electromagnetism were all put together to form a unifying theory of elementary particles. Furthermore, the model was developed within the context of relativistic quantum field theory, making it compatible with all of the laws of Einstein's Special Relativity. The successes of the Standard Model over the years have been tremendous and enduring, leading up to the recent discovery and continuing study of the Higgs boson. This book is a comprehensive and technical introduction to Standard Model physics. Martin and Wells provide readers who have no prior knowledge of quantum field theory or particle physics a firm foundation into the fundamentals of both. The emphasis is on obtaining practical knowledge of how to calculate cross-sections and decay rates. There is no better way to understand the necessary abstract knowledge and solidify its meaning than to learn how to apply it to the computation of observables that can be measured in a laboratory. Beginning graduate students, both experimental and theoretical, and advanced undergraduate students interested in particle physics, will find this to be an ideal one-semester textbook to begin their technical learning of elementary particle physics.

Elementary Physicochemical Processes on Solid Surfaces (Fundamental and Applied Catalysis)

by V.P. Zhdanov

vi industrial process or a class of catalysts forms the basis of other books, with information on: fundamental science of the topic, the use of the pro­ cess or catalysts, and engineering aspects. Single topics in catalysis are also treated in the series, with books giving the theory of the underlying science, and relating it to catalytic practice. We believe that this approach is giving a collection of volumes that is of value to both academic and industrial workers. The series editors welcome comments on the series and suggestions of topics for future volumes. Martyn Twigg Michael Spencer Billingham and Cardiff Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 1 . . . . . . . . Chapter 1. Vibrational Relaxation of Adsorbed Particles . . . .. . 5 1.1. General Approach to Describing Vibrational Relaxation ..... 5 1.2. Phonon Mechanism of Relaxation .................... 8 1.2.1. Relationship between the Simple Perturbation Theory and the Adiabatic Approximation .. . . . . . . . . . .. . . 9 . 1.2.2. One-Mode Approximation .................. . .. 11 1.2.3. Relaxation Caused by Correlation Potential Proportional to Displacement of Adsorbed Particle from Equilibrium ........................... 12 1.2.4. Relaxation Caused by Correlation Potential Proportional to Displacement of Surface Atom from Equilibrium ........................... 14 1.2.5. Results and Discussion ....................... 15 1.3. Vibrational Relaxation via Interaction with Conduction Electrons . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 18 . . . . . . . . . 1.3.1. Dipole Approximation ......... '.' . . . . . . . . .. . . 18 .

Elementary Physics of Complex Plasmas (Lecture Notes in Physics #731)

by V.N. Tsytovich Gregor Morfill Sergey V. Vladimirov Hubertus M. Thomas

Complex plasmas are dusty plasmas in which the density and electric charges of the dust grains are sufficiently high to induce long-range grain-grain interactions, as well as strong absorption of charged-plasma components. Together with the sources replenishing the plasma such systems form a highly dissipative thermodynamically open system that exhibits many features of collective behaviour generally found in complex systems. Most notably among them are self-organized patterns such as plasma crystals, plasma clusters, dust stars and further spectacular new structures. Beyond their intrinsic scientific interest, the study of complex plasmas grows in importance in a great variety of fields, ranging from space-plasma sciences to applied fields such as plasma processing, thin-film deposition and even the production of computer chips by plasma etching, in which strongly interacting clouds of complex plasmas can cause major contamination of the final product. Intended as first introductory but comprehensive survey of this rapidly emerging field, the present book addresses postgraduate students as well as specialist and nonspecialist researchers with a general background in either plasma physics, space sciences or the physics of complex systems.

Elementary Principles of Chemical Processes

by Richard M. Felder Ronald W. Rousseau Lisa G. Bullard

Elementary Principles of Chemical Processes, 4th Edition prepares students to formulate and solve material and energy balances in chemical process systems and lays the foundation for subsequent courses in chemical engineering. The text provides a realistic, informative, and positive introduction to the practice of chemical engineering.

Elementary Principles of Chemical Processes

by Richard Felder Ronald Rousseau Lisa Bullard

Refine Search

Showing 39,776 through 39,800 of 100,000 results