Browse Results

Showing 73,076 through 73,100 of 100,000 results

Light Scattering in Semiconductor Structures and Superlattices (Nato Science Series B: #273)

by D. J. Lockwood Jeff F. Young

Just over 25 years ago the first laser-excited Raman spectrum of any crystal was obtained. In November 1964, Hobden and Russell reported the Raman spectrum of GaP and later, in June 1965, Russell published the Si spectrum. Then, in July 1965, the forerunner of a series of meetings on light scattering in solids was held in Paris. Laser Raman spectroscopy of semiconductors was at the forefront in new developments at this meeting. Similar meetings were held in 1968 (New York), 1971 (Paris) and 1975 (Campinas). Since then, and apart from the multidisciplinary biennial International Conference on Raman Spectroscopy there has been no special forum for experts in light scattering spectroscopy of semiconductors to meet and discuss latest developments. Meanwhile, technological advances in semiconductor growth have given rise to a veritable renaissance in the field of semiconductor physics. Light scattering spectroscopy has played a crucial role in the advancement of this field, providing valuable information about the electronic, vibrational and structural properties both of the host materials, and of heterogeneous composite structures. On entering a new decade, one in which technological advances in lithography promise to open even broader horirons for semiconductor physics, it seemed to us to be an ideal time to reflect on the achievements of the past decade, to be brought up to date on the current state-of-the-art, and to catch some glimpses of where the field might be headed in the 1990s.

Light Scattering in Solids: Proceedings of the Second Joint USA-USSR Symposium

by J. L. Birman

The Second USA-USSR Symposium on Light Scattering in Con­ densed Matter was held in New York City 21-25 May 1979. The present volume is the proceedings of that conference, and contains all manuscripts received prior to 1 August 1979, representing scientific contributions presented. A few manus­ cripts were not received, but for completeness the corresponding abstract is printed. No record was kept of the discussion, so that some of the flavor of the meeting is missing. This is par­ ticularly unfortunate in the case of some topics which were in a stage of rapid development and where the papers presented sti­ mulated much discussion - such as the sessions on spatial dis­ persion and resonance inelastic (Brillouin or Raman) scattering in crystals, enhanced Raman scattering from molecules on metal surfaces, and the onset of turbulence in fluids. The background and history of the US-USSR Seminar-Symposia on light scattering was given in the preface to the proceedings of the First Symposium held in Moscow May 1975, published as "Theory of Light Scattering in Condensed Matter" ed. B. Bendow, J. L. Birman, V. M. Agranovich (Plenum Press, N. Y. 1976). Strong scientific interest on both sides in continuing this series resulted in a plan for the second symposium to be held in New York in 1977. For a variety of reasons it was necessary to cancel the planned 1977 event, almost at the last minute.

Light Scattering in Solids 1 (Topics in Applied Physics #8)

by E. Garmire J. M. Hammer H. Kogelnik T. Tamir F. Zernike

This book is devoted to the problem of inelastic light scattering in semiconductors, i.e., to processes in which a photon impinges upon a serniconductor, creating or anihilating one or several quasi-particles, and then emerges with an energy somewhat different from that of the incident photon. In light scattering spectroscopy the incident photons are monochromatic; one measures the energy distribution of the scat­ tered photons with a spectrometer. Because of its monochromaticity, power, and collimation, lasers are ideal sources for light scattering spectroscopy. Consequently, developments in the field of light scattering have followed, in recent years, the developments in laser technology. The scattering efficiencies are usually weak and thus light scattering spectroscopy requires sophisticated double and tripie monochromators with high stray light rejection ratio. Both, powerful lasers and good monochromators are specially important for studying the scattering of light to which the sampies of interest are opaque, as is the case in most semiconductors. This explains why these materials are relatively late­ corners to the field of light scattering. In spite of these difficulties, the field of light scattcring in semi­ conductors has experienced a boom in recent years, and reached a certain degree of maturity. Because of space limitations, the editor was faced with the necessity of making a choice in the subjects to be included. In spite of the natural bias towards his own research interests he hopes to have gathered a number of articles representative of present-day research in the field.

Light Scattering in Solids I: Introductory Concepts (Topics in Applied Physics #8)

by M. Cardona

With contributions by numerous experts

Light Scattering in Solids IX: Novel Materials and Techniques (Topics in Applied Physics #108)

by Manuel Cardona Roberto Merlin

This volume treats new materials (nanotubes and quantum dots) and new techniques (synchrotron radiation scattering and cavity confined scattering). In the past five years, Raman and Brillouin scattering have taken a place among the most important research and characterization methods for carbon nanotubes. Among the novel techniques discussed in this volume are those employing synchrotron radiation as a light source.

Light Scattering in Solids VI: Recent Results, Including High-Tc Superconductivity (Topics in Applied Physics #68)

by M. Cardona E. Ehrenfreund G. Güntherodt J. A. Kash W. Von Osten J. B. Page A. K. Ramdas S. Rodriguez C. Thomsen J. C. Tsang Y. Yacoby E. Zirngiebl

This is the sixth volume of a well-established and popular series in which expert practitioners discuss topical aspects of light scattering in solids. This volume discusses recent results of Raman spectroscopy of high Tc superconductors, organic polymers, rare earth compounds, semimagnetic superconductors, and silver halides, as well as developments in the rapidly growing field of time-resolved Raman spectroscopy. Emphasis is placed on obtaining information about elementary excitations, the basic properties of materials, and the use of Raman spectroscopy as an analytical tool. This volume may be regarded as an encyclopedia of condensed matter physics from the viewpoint of the Raman spectroscopist. It will be useful to advanced students and to all researchers who apply Raman spectroscopy in their work.

Light Scattering Reviews 10: Light Scattering and Radiative Transfer (Springer Praxis Books)

by Alexander A. Kokhanovsky

The work is aimed at the review of hot topics in modern light scattering and radiative transfer. A special attention will be given to the description of the methods of integro-differential radiative transfer equation solution. In particular, the asymptotic radiative transfer and the method of discrete ordinates will be considered. A comprehensive review of light absorption in the terrestrial atmosphere will be given as well. The inverse problem solution will be reviewed as well.

Light Scattering Reviews 2 (Springer Praxis Books)

by Alexander A. Kokhanovsky

Light Scattering Reviews 3: Light Scattering and Reflection (Springer Praxis Books)

by Alexander A. Kokhanovsky

This is the 3rd volume of a "Light Scattering Reviews" series devoted to current knowledge of light scattering problems and both experimental and theoretical research techniques related to their solution. This volume covers applications in remote sensing, inverse problems and geophysics, with a particular focus on terrestrial clouds. The influence of clouds on climate is poorly understood. The theoretical aspects of this problem constitute the main emphasis of this work.

Light Scattering Reviews 5: Single Light Scattering and Radiative Transfer (Springer Praxis Books)

by Alexander A. Kokhanovsky

Light scattering by densely packed inhomogeneous media is a particularly ch- lenging optics problem. In most cases, only approximate methods are used for the calculations. However, in the case where only a small number of macroscopic sc- tering particles are in contact (clusters or aggregates) it is possible to obtain exact results solving Maxwell’s equations. Simulations are possible, however, only for a relativelysmallnumberofparticles,especiallyiftheirsizesarelargerthanthewa- length of incident light. The ?rst review chapter in PartI of this volume, prepared by Yasuhiko Okada, presents modern numerical techniques used for the simulation of optical characteristics of densely packed groups of spherical particles. In this case, Mie theory cannot provide accurate results because particles are located in the near ?eld of each other and strongly interact. As a matter of fact, Maxwell’s equations must be solved not for each particle separately but for the ensemble as a whole in this case. The author describes techniques for the generation of shapes of aggregates. The orientation averaging is performed by a numerical integration with respect to Euler angles. The numerical aspects of various techniques such as the T-matrix method, discrete dipole approximation, the ?nite di?erence time domain method, e?ective medium theory, and generalized multi-particle Mie so- tion are presented. Recent advances in numerical techniques such as the grouping and adding method and also numerical orientation averaging using a Monte Carlo method are discussed in great depth.

Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface (Springer Praxis Books)

by Alexander A. Kokhanovsky

Light Scattering Reviews (vol.7) is aimed at the description of modern advances in radiative transfer and light scattering. The following topics will be considered: the general - purpose discrete - ordinate algorithm DISORT for radiative transfer, fast radiative transfer techniques, use of polarization in remote sensing, Markovian approach for radiative transfer in cloudy atmospheres, coherent and incoherent backscattering by turbid media and surfaces,advances in radiative transfer methods as used for luminiscence tomography, optical properties of aerosol, ice crystals, snow, and oceanic water. This volume will be a valuable addition to already published volumes 1-6 of Light Scattering Reviews.

Light Scattering Reviews 8: Radiative transfer and light scattering (Springer Praxis Books)

by Alexander A. Kokhanovsky

Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

Light Scattering Reviews 9: Light Scattering and Radiative Transfer (Springer Praxis Books)

by Alexander Kokhanovsky

Light Scattering Reviews (vol. 9) is aimed at the description of modern advances in radiative transfer and light scattering. The following topics will be considered: light scattering by atmospheric dust particles and also by inhomogeneous scatterers, the general - purpose discrete - ordinate algorithm DISORT for radiative transfer, the radiative transfer code RAY based on the adding-doubling solution of the radiative transfer equation, aerosol and cloud remote sensing, use of polarization in remote sensing, direct aerosol radiative forcing, principles of the Mueller matrix measurements, light reflectance from various land surfaces. This volume will be a valuable addition to already published volumes 1-8 of Light Scattering Reviews.

Light Scattering Reviews, Vol. 6: Light Scattering and Remote Sensing of Atmosphere and Surface

by Alexander A. Kokhanovsky

This is the next volume in series of Light Scattering Reviews. Volumes 1-5 have already been printed by Springer. The volume is composed of several papers ( usually, 10) of leading researchers in the respective field. The main focus of this book is light scattering, radiative transfer and optics of snow.

Light Scattering Reviews, Volume 11: Light Scattering and Radiative Transfer (Springer Praxis Books)

by Alexander Kokhanovsky

This is the eleventh volume in the series Light Scattering Reviews, devoted to current knowledge of light scattering problems and both experimental and theoretical research techniques related to their solution. The focus of this volume is to describe modern advances in radiative transfer and light scattering optics. This book brings together the most recent studies on light radiative transfer in the terrestrial atmosphere, while also reviewing environmental polarimetry. The book is divided into nine chapters: • the first four chapters review recent advances in modern radiative transfer theory and provide detailed descriptions of radiative transfer codes (e.g., DISORT and CRTM). Approximate solutions of integro-differential radiative transfer equations for turbid media with different shapes (spheres, cylinders, planeparallel layers) are detailed; • chapters 5 to 8 focus on studies of light scattering by single particles and radially inhomogeneous media; • the final chapter discusses the environmental polarimetry of man-made objects.

Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles

by Stepan Podzimek

A comprehensive, practical approach to three powerful methods of polymer analysis and characterization This book serves as a complete compendium of three important methods widely used for the characterization of synthetic and natural polymers—light scattering, size exclusion chromatography (SEC), and asymmetric flow field flow fractionation (A4F). Featuring numerous up-to-date examples of experimental results obtained by light scattering, SEC, and A4F measurements, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation takes an all-in-one approach to deliver a complete and thorough explanation of the principles, theories, and instrumentation needed to characterize polymers from the viewpoint of their molar mass distribution, size, branching, and aggregation. This comprehensive resource: Is the only book gathering light scattering, size exclusion chromatography, and asymmetric flow field flow fractionation into a single text Systematically compares results of size exclusion chromatography with results of asymmetric flow field flow fractionation, and how these two methods complement each other Provides in-depth guidelines for reproducible and correct determination of molar mass and molecular size of polymers using SEC or A4F coupled with a multi-angle light scattering detector Offers a detailed overview of the methodology, detection, and characterization of polymer branching Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation should be of great interest to all those engaged in the polymer analysis and characterization in industrial and university research, as well as in manufacturing quality control laboratories. Both beginners and experienced can confidently rely on this volume to confirm their own understanding or to help interpret their results.

Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles

by Stepan Podzimek

A comprehensive, practical approach to three powerful methods of polymer analysis and characterization This book serves as a complete compendium of three important methods widely used for the characterization of synthetic and natural polymers—light scattering, size exclusion chromatography (SEC), and asymmetric flow field flow fractionation (A4F). Featuring numerous up-to-date examples of experimental results obtained by light scattering, SEC, and A4F measurements, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation takes an all-in-one approach to deliver a complete and thorough explanation of the principles, theories, and instrumentation needed to characterize polymers from the viewpoint of their molar mass distribution, size, branching, and aggregation. This comprehensive resource: Is the only book gathering light scattering, size exclusion chromatography, and asymmetric flow field flow fractionation into a single text Systematically compares results of size exclusion chromatography with results of asymmetric flow field flow fractionation, and how these two methods complement each other Provides in-depth guidelines for reproducible and correct determination of molar mass and molecular size of polymers using SEC or A4F coupled with a multi-angle light scattering detector Offers a detailed overview of the methodology, detection, and characterization of polymer branching Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation should be of great interest to all those engaged in the polymer analysis and characterization in industrial and university research, as well as in manufacturing quality control laboratories. Both beginners and experienced can confidently rely on this volume to confirm their own understanding or to help interpret their results.

Light Scattering Spectra of Solids: Proceedings of the International Conference on Light Scattering Spectra of Solids held at: New York University, New York September 3, 4, 5, 6, 1968

by George B. Wright

The International Conference on Light Scattering Spectra of Solids was held at New York University on September 3, 4, 5, 6, 1968. The Conference received financial support from the U. S. Army Research Office (Durham), The New York State Science and Technology Foundation, the U. S. Office of Naval Research, and The Graduate School of Arts and Sciences of New York University. Co-sponsoring the Conference was the International Union of Pure and Applied Physics. The initial conception for the Light Scattering Conference arose from informal discussions held by Professor Eli Burstein, Professor Marvin Silver (representing the U. S. Army Research Office) and Professor Joseph Birman, late in 1966. In early discussions a format was put forth for a meeting to be held the following year, re­ viewing the state of the art, and emphasizing novel developments which had 9ccurred since the 1965 International Colloquium on Scattering Spectra of Crystals held in Paris (proceedings published in Le Journal de Physique, Volume 26, November 1965).

Light Scattering Technology for Food Property, Quality and Safety Assessment (Contemporary Food Engineering)

by Renfu Lu

Light Scattering Technology for Food Property, Quality and Safety Assessment discusses the development and application of various light scattering techniques for measuring the structural and rheological properties of food, evaluating composition and quality attributes, and detecting pathogens in food. The first four chapters cover basic concepts, principles, theories, and modeling of light transfer in food and biological materials. Chapters 5 and 6 describe parameter estimation methods and basic techniques for determining optical absorption and scattering properties of food products. Chapter 7 discusses the spatially-resolved measurement technique for determining the optical properties of food and biological materials, whereas Chapter 8 focuses on the time-resolved spectroscopic technique for measuring optical properties and quality or maturity of horticultural products. Chapter 9 examines practical light scattering techniques for nondestructive quality assessment of fruits and vegetables. Chapter 10 presents the theory of light transfer in meat muscle and the measurement of optical properties for determining the postmortem condition and textural properties of muscle foods and meat analogs. Chapter 11 covers the applications of spatially-resolved light scattering techniques for assessing quality and safety of animal products. Chapter 12 looks into light scattering for milk and dairy processing. Chapter 13 examines the applications of dynamic light scattering for measuring the microstructure and rheological properties of food. Chapter 14 shows the applications of a biospeckle technique for assessing the quality and condition of fruits and vegetables. Chapter 15 provides a detailed description of Raman scattering spectroscopic and imaging techniques in food quality and safety assessment. Chapter 16, the final chapter, focuses on applications of light scattering techniques for the detection of food-borne pathogens.

Light Scattering Technology for Food Property, Quality and Safety Assessment (Contemporary Food Engineering)

by Renfu Lu

Light Scattering Technology for Food Property, Quality and Safety Assessment discusses the development and application of various light scattering techniques for measuring the structural and rheological properties of food, evaluating composition and quality attributes, and detecting pathogens in food. The first four chapters cover basic concepts, principles, theories, and modeling of light transfer in food and biological materials. Chapters 5 and 6 describe parameter estimation methods and basic techniques for determining optical absorption and scattering properties of food products. Chapter 7 discusses the spatially-resolved measurement technique for determining the optical properties of food and biological materials, whereas Chapter 8 focuses on the time-resolved spectroscopic technique for measuring optical properties and quality or maturity of horticultural products. Chapter 9 examines practical light scattering techniques for nondestructive quality assessment of fruits and vegetables. Chapter 10 presents the theory of light transfer in meat muscle and the measurement of optical properties for determining the postmortem condition and textural properties of muscle foods and meat analogs. Chapter 11 covers the applications of spatially-resolved light scattering techniques for assessing quality and safety of animal products. Chapter 12 looks into light scattering for milk and dairy processing. Chapter 13 examines the applications of dynamic light scattering for measuring the microstructure and rheological properties of food. Chapter 14 shows the applications of a biospeckle technique for assessing the quality and condition of fruits and vegetables. Chapter 15 provides a detailed description of Raman scattering spectroscopic and imaging techniques in food quality and safety assessment. Chapter 16, the final chapter, focuses on applications of light scattering techniques for the detection of food-borne pathogens.

Light Science: Physics and the Visual Arts (Undergraduate Texts in Contemporary Physics)

by Thomas D. Rossing Christopher J Chiaverina

Intended for students in the visual arts and for others with an interest in art, but with no prior knowledge of physics, this book presents the science behind what and how we see. The approach emphasises phenomena rather than mathematical theories and the joy of discovery rather than the drudgery of derivations. The text includes numerous problems, and suggestions for simple experiments, and also considers such questions as why the sky is blue, how mirrors and prisms affect the colour of light, how compact disks work, and what visual illusions can tell us about the nature of perception. It goes on to discuss such topics as the optics of the eye and camera, the different sources of light, photography and holography, colour in printing and painting, as well as computer imaging and processing.

Light Science: Physics and the Visual Arts (Undergraduate Texts In Contemporary Physics Ser.)

by Thomas D. Rossing Christopher J. Chiaverina

Intended for students in the visual arts and for others with an interest in art, but with no prior knowledge of physics, this book presents the science behind what and how we see. The approach emphasises phenomena rather than mathematical theories and the joy of discovery rather than the drudgery of derivations. The text includes numerous problems, and suggestions for simple experiments, and also considers such questions as why the sky is blue, how mirrors and prisms affect the colour of light, how compact disks work, and what visual illusions can tell us about the nature of perception. It goes on to discuss such topics as the optics of the eye and camera, the different sources of light, photography and holography, colour in printing and painting, as well as computer imaging and processing.

Light Sensing in Plants

by M. Wada K. Shimazaki M. Iino

Plants utilize light not only for photosynthesis but also as environmental signals. They are capable of perceiving wavelength, intensity, direction, duration, and other attributes of light to perform appropriate physiological and developmental changes. This volume presents overviews of and the latest findings in many of the interconnected aspects of plant photomorphogenesis, including photoreceptors (phytochromes, cryptochromes, and phototropins), signal transduction, photoperiodism, and circadian rhythms, in 42 chapters. Also included, is a prologue by Prof. Masaki Furuya that gives an overview of the historical background. With contributions from preeminent researchers in specific subjects from around the world, this book will be a valuable source for a range of scientists from undergraduate to professional levels.

Light-Sensitive Polymeric Nanoparticles Based on Photo-Cleavable Chromophores (Springer Theses)

by Daniel Klinger

The triggered release of functional compounds from such polymeric carriers as micelles, nanoparticles or nanogels is a rapidly developing and highly versatile concept which is expected to be one of the key approaches to future therapeutics. In his thesis, Daniel Klinger highlights the approach of stimuli-responsive microgels for such applications and discusses why especially light as a trigger has an outstanding position amongst the family of conventional stimuli. Based on these considerations, the author focuses on the design, synthesis and characterization of novel photo-sensitive microgels and nanoparticles as potential materials for the loading and light-triggered release/accessibility of functional compounds. Starting from the synthesis of photo-cleavable organic building blocks and their use in the preparation of polymeric nanoparticles, continuing to the examination of their loading and release profiles, and concluding with biological in vitro studies of the final materials, Daniel Klinger’s work is an excellent example of the multidisciplinary research needed for the successful development of new materials in this field and has led to a number of further publications in internationally respected journals.

Light Sheet Fluorescence Microscopy

by Emmanuel G. Reynaud Pavel Tomančák

Light Sheet Fluorescence Microscopy An indispensable guide to a novel, revolutionary fluorescence microscopy technique! Light sheet fluorescence microscopy has revolutionized microscopy, since it allows scientists to perform experiments in an entirely different manner and to record data that had not been accessible before. With contributions from noted experts in the fields of physics, biology, and computer science, Light Sheet Fluorescence Microscopy is a unique guide that offers a practical approach to the subject, including information on the basics of light sheet fluorescence microscopy, instrumentation, applications, sample preparation, and data analysis. Comprehensive in scope, the book is filled with the cutting-edge methods as well as valuable insider tips. Grounded in real-world applications, the book includes chapters from major manufacturers that explores their recent systems and developments. In addition, the book hightlights a discussion of a “do-it-yourself” light sheet microscope, making the technique affordable for every laboratory. This important textbook: Serves as an easy-to-understand introduction to light sheet-based fluorescence Includes numerous tips and tricks for advanced practitioners Provides in-depth information on hardware and software solutions for a straightforward implementation of light sheet fluorescence microscopy in the lab Includes chapters from the major manufacturers including Zeiss, Leica, Lavision Biotech, Phase View, and Asi Aimed at cell biologists, biophysicists, developmental biologists, and neuro-biologists, Light Sheet Fluorescence Microscopy offers a comprehensive overview of the most recent applications of this microscopy technique.

Refine Search

Showing 73,076 through 73,100 of 100,000 results