Browse Results

Showing 13,576 through 13,600 of 100,000 results

Biodegradable Polymers in the Circular Plastics Economy

by Michiel Dusselier Jean-Paul Lange

Biodegradable Polymers in the Circular Plastics Economy A comprehensive overview of the burgeoning field of biodegradable plastics As the lasting impact of humanity’s reliance on plastics comes into focus, scholars have begun to seek out solutions to plastic litter. In Biodegradable Polymers in the Circular Plastics Economy, an accomplished team of researchers delivers a focused guide (1) to understand plastic degradation and its role in waste hierarchy besides recycling, and (2) to create and use biodegradable plastics where appropriate. Created preferably from renewable resources, these eco-friendly polymers provide an opportunity to create sustainable and lasting solutions to the growing plastic-driven pollution problem. The broad approach to this handbook allows the authors to cover all aspects of these emerging materials, ranging from the problems present in the current plastics cycle, to the differences in type, production, and chemistry available within these systems, to end-of-life via recycling or degradation, and to life-cycle assessments. It also delves into potential commercial and policy issues to be addressed to successfully deploy this technology. Readers will also find: A thorough introduction to biodegradable polymers, focusing not only on the scientific aspects, but also addressing the larger political, commercial, and consumer concerns Mechanisms of biodegradation and the environmental impact of persistent polymers An in-depth discussion of degradable/hydrolysable polyesters, polysaccharides, lignin-based polymers, and vitrimers Management of plastic waste and life cycle assessment of bio-based plastics Biodegradable Polymers in the Circular Plastics Economy is the perfect overview of this complicated but essential research field and will appeal to polymer chemists, environmental chemists, chemical engineers, and bioengineers in academia and industry. The book is intended as a step towards a circular plastics economy that relies heavily on degradable plastics to sustain it.

Biodegradable Waste Processing for Sustainable Developments (Renewable and Sustainable Energy Developments)

by Arbind Prasad, Atanu Kumar Paul

The text comprehensively highlights the key issues surrounding the implementation of waste-to-energy systems, such as site selection, regulatory aspects and financial, and economic implications. It further discusses environmental aspects of food waste to energy conversion, microbial fuel cells (MFCs) for waste recycling and energy production, and valorization of algal blooms and their residues into renewable energy.This book: Discusses the environmental impact of waste-to-energy and sustainable waste-to-energy technologies in a comprehensive manner. Presents life cycle assessment studies and perspective solutions in waste-to-energy sectors. Covers applications of smart materials in thermal energy storage systems. Explains thermo-chemical technologies for recycling plastic waste for energy production and recovery of valuable products. Illustrates biorefineries and case studies for sustainable waste valorization. It is primarily written for senior undergraduate nad graduate students, and academic researchers in the fields of mechanical engineering, environmental engineering, energy studies, production engineering, industrial engineering, and manufacturing engineering.

Biodegradable Waste Processing for Sustainable Developments (Renewable and Sustainable Energy Developments)


The text comprehensively highlights the key issues surrounding the implementation of waste-to-energy systems, such as site selection, regulatory aspects and financial, and economic implications. It further discusses environmental aspects of food waste to energy conversion, microbial fuel cells (MFCs) for waste recycling and energy production, and valorization of algal blooms and their residues into renewable energy.This book: Discusses the environmental impact of waste-to-energy and sustainable waste-to-energy technologies in a comprehensive manner. Presents life cycle assessment studies and perspective solutions in waste-to-energy sectors. Covers applications of smart materials in thermal energy storage systems. Explains thermo-chemical technologies for recycling plastic waste for energy production and recovery of valuable products. Illustrates biorefineries and case studies for sustainable waste valorization. It is primarily written for senior undergraduate nad graduate students, and academic researchers in the fields of mechanical engineering, environmental engineering, energy studies, production engineering, industrial engineering, and manufacturing engineering.

Biodegradation and Bioconversion of Hydrocarbons (Environmental Footprints and Eco-design of Products and Processes)

by Kirsten Heimann Obulisamy Parthiba Karthikeyan Subramanian Senthilkannan Muthu

This book details three main topics: the screening and characterization of hydrocarbons from air, soil and water; technologies in the biodegradation of hydrocarbons; and the bioconversion of hydrocarbons for biofuel/chemicals, as well as recent developments in the remediation of hydrocarbons and their environmental benefits. The first section focuses on screening methods, qualitative and quantitative analysis of hydrocarbons from soil, air and water environments, speciation of hydrocarbons, and natural bioremediation strategies in such environments. The second section examines technologies for removing hydrocarbon contaminants from various environments, especially advanced technologies for the removal of hydrocarbons and in-situ and ex-situ remediation strategies and problems, as well as concrete case studies. The last section, covering the bioconversion of hydrocarbons for biofuel/chemicals, highlights the biochemicals and bioproducts developed from hydrocarbons, with a particular focus on biochemical and chemical technologies used to produce biopolymers, biofuel precursors and commodity chemicals from hydrocarbons.

Biodegradation and Persistence (The Handbook of Environmental Chemistry #2 / 2K)

by B. Beek

Biodegradation is a key phenomen among environmental processes. Low degradation rates lead to the persistence of chemicals in the environment and, as a consequence, to delayed or long-term effects, which may be even unknown by now. In this volume the editor has pulled together the newest results of research in biodegradation and persistence of potential environmentally harmful substances and the complex process involved. The main focus is on the microbial degradation, the evolution and predictability of the respective pathways and their impact on bioremediation. Additional chapters deal with sewage treatment plants, the impact of toxicants on impaired biodegradation, and with the need of a more realistic view on fate and behaviour of chemicals in the environment.

Biodegradation of Azo Dyes (The Handbook of Environmental Chemistry #9)

by Hatice Atacag Erkurt M. Arshad H. Atacag Erkurt U. C. Banerjee L. Bardi R.M.F. Bezerra Ö. Çinar D. Crowley K. Demiröz A. A. Dias A. Di Donato E. A Erkurt J. Guo L. Kang A. Khalid R. Khan R. Liu X. Lu M. S. Lucas A. Marzocchella M. Marzona M. A. Mazmanci G. Olivieri J. A. Peres P. Salatino A. Sampaio S. Sandhya A. Unyayar X. Wang J. Yang

Azo dyes play an important role as coloring agents in the textile, food, and pharmaceutical industry. Due to the toxicity, mutagenicity and carcinogenicity of azo dyes and their breakdown products, their removal from industrial wastewaters has been an urgent challenge. Promising and cost-effective methods are based on their biodegradation, which is treated in this volume. The topics presented by experts in the field include: the classification of azo dyes; toxicity caused by azo dyes; aerobic and anaerobic azo dye biodegradation mechanisms; the role of bacteria, fungi, algae and their enzymes in biodegradation; the impact of redox mediators on azo dye reduction; the integration of biological with physical and chemical processes; the biotransformation of aromatic amines; reactor modelling for azo dye conversion; the biodegradation of azo dyes by immobilized bacteria and fungi; and factors affecting the complete mineralization of azo dyes.

Biodegradation, Pollutants and Bioremediation Principles

by Ederio Dino Bidoia

This book presents a broad compendium of biodegradation research and discussions on the most up-to-date bioremediation strategies. The most relevant microbiological, biochemical and genetic concepts are presented alongside the fundamentals of bioremediation. The topics include: a wide variety of contaminant impacts evaluation, key methodologies required to measure biodegradation and propose new bioremediation protocols, as well as the handling of microbial communities related to such processes. The selected collaborating authors are renowned for their microbiology expertise and will provide an in-depth reference for students and specialists. The contents provide a valuable source of information for researchers, professionals, and policy makers alike.

Biodegradation, Pollutants and Bioremediation Principles

by Ederio Dino Bidoia Renato Nallin Montagnolli

This book presents a broad compendium of biodegradation research and discussions on the most up-to-date bioremediation strategies. The most relevant microbiological, biochemical and genetic concepts are presented alongside the fundamentals of bioremediation. The topics include: a wide variety of contaminant impacts evaluation, key methodologies required to measure biodegradation and propose new bioremediation protocols, as well as the handling of microbial communities related to such processes. The selected collaborating authors are renowned for their microbiology expertise and will provide an in-depth reference for students and specialists. The contents provide a valuable source of information for researchers, professionals, and policy makers alike.

Biodental Engineering II

by R. M. Natal Jorge J. C. Reis Campos Sónia M. Santos Joao Manuel R. S. Tavares

Dentistry is a branch of medicine with its own peculiarities and very diverse areas of action, which means that it can be considered as an interdisciplinary field. BIODENTAL ENGINEERING II contains the full papers presented at the 2nd International Conference on Biodental Engineering (BioDENTAL 2012, Porto, Portugal, 7-8 December 2012). The contrib

Biodental Engineering III

by J. C. Reis Campos Sónia M. Santos João Manuel R. S. Tavares Mário A. P. Vaz R. M. Natal Jorge

Dentistry is a branch of medicine with its own peculiarities and very diverse areas of action, which means that it can be considered as an interdisciplinary field. Currently the use of new techniques and technologies receives much attention. Biodental Engineering III contains contributions from 13 countries, which were presented at BIODENTAL 2014,

Biodental Engineering IV: Proceedings of the IV International Conference on Biodental Engineering, June 21-23, 2016, Porto, Portugal

by João Manuel R.S. Tavares R.M. Natal Jorge J.C. Reis Campos Mário A.P. Vaz Sónia M. Santos

Since dentistry is a branch of medicine with its own peculiarities and very diverse areas of action, it can be considered as an interdisciplinary field. BIODENTAL ENGINEERING IV contains the full papers presented at the 4th International Conference on Biodental Engineering (BIODENTAL 2016, Vila Nova de Famalicão, Portugal, 21—23 June 2016), and covers the use of new techniques and technologies in dentistry. The contributions provide a comprehensive coverage of the state-of-the art in this area, and addresses the following topics: • Aesthetics• Bioengineering• Biomaterials• Biomechanical disorders• Biomedical devices• Computational bio- imaging and visualization• Computational methods• Dental medicine• Experimental mechanics• Signal processing and analysis• Implantology• Minimally invasive devices and techniques• Orthodontics• Prosthesis and orthosis• Simulation• Software development• Telemedicine• Tissue engineering• Virtual reality BIODENTAL ENGINEERING IV will be of interest to academics and professionals involved or interested in dentistry, biomechanical disorders, numerical simulation, orthodontics, implantology, aesthetics, dental medicine, medical devices and medical imaging.

Biodental Engineering IV: Proceedings of the IV International Conference on Biodental Engineering, June 21-23, 2016, Porto, Portugal

by Sónia M. Santos R. M. Natal Jorge J. C. Reis Campos Mário A. P. Vaz Joao Manuel R. S. Tavares

Since dentistry is a branch of medicine with its own peculiarities and very diverse areas of action, it can be considered as an interdisciplinary field. BIODENTAL ENGINEERING IV contains the full papers presented at the 4th International Conference on Biodental Engineering (BIODENTAL 2016, Vila Nova de Famalicão, Portugal, 21—23 June 2016), and covers the use of new techniques and technologies in dentistry. The contributions provide a comprehensive coverage of the state-of-the art in this area, and addresses the following topics: • Aesthetics• Bioengineering• Biomaterials• Biomechanical disorders• Biomedical devices• Computational bio- imaging and visualization• Computational methods• Dental medicine• Experimental mechanics• Signal processing and analysis• Implantology• Minimally invasive devices and techniques• Orthodontics• Prosthesis and orthosis• Simulation• Software development• Telemedicine• Tissue engineering• Virtual reality BIODENTAL ENGINEERING IV will be of interest to academics and professionals involved or interested in dentistry, biomechanical disorders, numerical simulation, orthodontics, implantology, aesthetics, dental medicine, medical devices and medical imaging.

Biodental Engineering V: Proceedings of the 5th International Conference on Biodental Engineering (BIODENTAL 2018), June 22-23, 2018, Porto, Portugal

by Jorge Belinha R. M. Natal Jorge J. C. Reis Campos Mário A. P. Vaz João Manuel R. S. Tavares

Dentistry is a branch of medicine with its own particularities and very different fields of action, and is generally regarded as an interdisciplinary field. The use of new technologies is currently the main driving force for the series of international conferences on Biodental Engineering (BIODENTAL). BIODENTAL ENGINEERING V contains the full papers presented at the 5th International Conference on Biodental Engineering (BIODENTAL 2018, Porto, Portugal, 22-23 June 2018). The conference had two workshops, one of them dealing with computational imaging combined with finite element method, the other dealing with bone tissue remodelling models. Additionally, the conference had three special sessions and sixty contributed presentations. The topics discussed in BIODENTAL ENGINEERING V include: AestheticsBioengineeringBiomaterialsBiomechanical disordersBiomedical devicesComputational bio- imaging and visualizationComputational methodsDental medicineExperimental mechanicsSignal processing and analysisImplantologyMinimally invasive devices and techniquesOrthodonticsProsthesis and orthosisSimulationSoftware developmentTelemedicineTissue engineeringVirtual reality The purpose of the series of BIODENTAL Conferences on Biodental Engineering, initiated in 2009, is to perpetuate knowledge on bioengineering applied to dentistry, by promoting a comprehensive forum for discussion on recent advances in related fields in order to identify potential collaboration between researchers and end-users from different sciences.

Biodentine™: Properties and Clinical Applications

by Imad About

This book is a comprehensive guide to BiodentineTM, an innovative biocompatible and bioactive material based on pure tricalcium silicate that can permanently replace dentin and can also serve as a temporary enamel substitute. Although BiodentineTM has been widely used across the world for the past decade, this is the first book to be devoted to its properties, interactions with the soft and hard tissues, and its multiple clinical applications. The coverage encompasses applications in primary and permanent teeth, in specialties as diverse as restorative dentistry, endodontics, paediatric dentistry, dental traumatology, and prosthetic dentistry. BiodentineTM application both in vital pulp therapy and endodontic procedures is illustrated and clinical step by step protocols are provided. The book provides a detailed update on BiodentineTM use to preserve the pulp vitality in direct/indirect pulp capping, pulpotomy and irreversible pulpitis treatment. It also details BiodentineTM use for non-vital teeth treatment in indications such as root/furcation perforation repair, apexification as well as in regenerative endodontic procedures.BiodentineTM: Properties and Clinical Applications will be a rich source of guidance and information for all dentists as well as dental students and academics.

Biodesulfurization in Petroleum Refining

by Nour Shafik El-Gendy Hussein Mohamed Nassar

Petroleum refining and process engineering is constantly changing. No new refineries are being built, but companies all over the world are still expanding or re-purposing huge percentages of their refineries every year, year after year. Rather than building entirely new plants, companies are spending billions of dollars in the research and development of new processes that can save time and money by being more efficient and environmentally safer. Biodesulfurization is one of those processes, and nowhere else it is covered more thoroughly or with more up-to-date research of the new advances than in this new volume from Wiley-Scrivener. Crude oil consists of hydrocarbons, along with other minerals and trace elements. Sulfur is the most abundant element after carbon and hydrogen, then comes after it nitrogen, and they usually concentrated in the higher boiling fractions of the crude oil. The presence of sulfur compounds causes the corrosion of refining facilities and catalysts poisoning. Moreover, the presence of nitrogen-compounds directly impacts the refining processes via; poisoning the cracking catalysts and inhibiting the hydrodesulfurization catalysts. In addition, both have bad impacts on the environment, throughout the sulfur and nitrogen oxide emissions. Removing this sulfur and nitrogen from the refining process protects equipment and the environment and creates a more efficient and cost-effective process. Besides the obvious benefits to biodesulfurization, there are new regulations in place within the industry with which companies will, over the next decade or longer, spend literally tens, if not hundreds, of billions of dollars to comply. Whether for the veteran engineer needing to update his or her library, the beginning engineer just learning about biodesulfurization, or even the student in a chemical engineering class, this outstanding new volume is a must-have. Especially it covers also the bioupgrading of crude oil and its fractions, biodenitrogenation technology and application of nanotechnology on both bio-desulfurization and denitrogenation technologies.

Biodesulfurization in Petroleum Refining

by Nour Shafik El-Gendy Hussein Mohamed Nassar

Petroleum refining and process engineering is constantly changing. No new refineries are being built, but companies all over the world are still expanding or re-purposing huge percentages of their refineries every year, year after year. Rather than building entirely new plants, companies are spending billions of dollars in the research and development of new processes that can save time and money by being more efficient and environmentally safer. Biodesulfurization is one of those processes, and nowhere else it is covered more thoroughly or with more up-to-date research of the new advances than in this new volume from Wiley-Scrivener. Crude oil consists of hydrocarbons, along with other minerals and trace elements. Sulfur is the most abundant element after carbon and hydrogen, then comes after it nitrogen, and they usually concentrated in the higher boiling fractions of the crude oil. The presence of sulfur compounds causes the corrosion of refining facilities and catalysts poisoning. Moreover, the presence of nitrogen-compounds directly impacts the refining processes via; poisoning the cracking catalysts and inhibiting the hydrodesulfurization catalysts. In addition, both have bad impacts on the environment, throughout the sulfur and nitrogen oxide emissions. Removing this sulfur and nitrogen from the refining process protects equipment and the environment and creates a more efficient and cost-effective process. Besides the obvious benefits to biodesulfurization, there are new regulations in place within the industry with which companies will, over the next decade or longer, spend literally tens, if not hundreds, of billions of dollars to comply. Whether for the veteran engineer needing to update his or her library, the beginning engineer just learning about biodesulfurization, or even the student in a chemical engineering class, this outstanding new volume is a must-have. Especially it covers also the bioupgrading of crude oil and its fractions, biodenitrogenation technology and application of nanotechnology on both bio-desulfurization and denitrogenation technologies.

Biodeterioration 7

by D. R. Houghton Smith H. O. Eggins

Because of the magnificent response to the call for papers for the 7th International Biodeterioration Symposium held at Cambridge, UK, some difficulties have been experienced in the editing of these proceedings. The numbers of papers submitted exceeded expectation and because of this it has been necessary to accommodate those not actually in the proceedings into the International Biodeterioration journal. A small number of papers were not suitable for publication and were therefore eliminated. Many authors disregarded the guidelines laid down for the length of submitted papers. However, every attempt has been made to accommodate the maximum number of contributions in the proceedings. The original selection included those which most nearly conformed to the length requirement. Even so this has meant, in many cases, cutting down the text, eliminating tables and/or illustrations and pruning the reference list. When references have been trimmed a note has been included to the effect that an extended list may be obtained from the author/senior author. Where it was not possible to carry out these procedures without seriously altering the text and the import of the paper they have been included amongst those to be published in the journal International Biodeterioration. The exceptions to the procedures outlined above are the invited review papers which have been presented in full. Happily, the authors have been conscientious in keeping to the guidelines laid down for these contributions.

Biodeterioration of Concrete

by Thomas Dyer

Awareness of the importance of ensuring durability of concrete has been a growing concern of engineers, and there is now considerable understanding of the mechanisms, which cause its deterioration, and means of limiting such damage through the use of appropriate materials and approaches to design. Many of the deterioration mechanisms, which affect concrete, are the result of interaction with the non-living environment – chlorides in seawater, carbon dioxide in the atmosphere, cyclic freezing and thawing. However, living organisms can also cause damage – through both chemical and physical processes - which under the right conditions, can be severe. This book looks at all forms of concrete biodeterioration together for the first time. It examines, from a fundamental starting point, biodeterioration mechanisms, as well as the conditions which allow living organisms (bacteria, fungi, plants and a range of marine organisms) to colonise concrete. A detailed evaluation of chemical compounds produced by living organisms with respect to their interaction with the mineral constituents of concrete, and the implications it has for the integrity of structures, is also included. Approaches to avoiding biodeterioration of concrete are also covered, including selection of materials, mix proportioning, design, and use of protective systems.

Biodeterioration of Concrete

by Thomas Dyer

Awareness of the importance of ensuring durability of concrete has been a growing concern of engineers, and there is now considerable understanding of the mechanisms, which cause its deterioration, and means of limiting such damage through the use of appropriate materials and approaches to design. Many of the deterioration mechanisms, which affect concrete, are the result of interaction with the non-living environment – chlorides in seawater, carbon dioxide in the atmosphere, cyclic freezing and thawing. However, living organisms can also cause damage – through both chemical and physical processes - which under the right conditions, can be severe. This book looks at all forms of concrete biodeterioration together for the first time. It examines, from a fundamental starting point, biodeterioration mechanisms, as well as the conditions which allow living organisms (bacteria, fungi, plants and a range of marine organisms) to colonise concrete. A detailed evaluation of chemical compounds produced by living organisms with respect to their interaction with the mineral constituents of concrete, and the implications it has for the integrity of structures, is also included. Approaches to avoiding biodeterioration of concrete are also covered, including selection of materials, mix proportioning, design, and use of protective systems.

Biodiesel: A Realistic Fuel Alternative for Diesel Engines

by Ayhan Demirbas

Biodiesel: A Realistic Fuel Alternative for Diesel Engines describes the production and characterization of biodiesel. The book also presents current experimental research work in the field, including techniques to reduce biodiesel’s high viscosity. Researchers in renewable energy, as well as fuel engineers, will discover a myriad of new ideas and promising possibilities.

Biodiesel: Growing a New Energy Economy, 2nd Edition

by Greg Pahl Bill McKibben

For anyone who is trying to keep up with the extremely rapid developments in the biodiesel industry, the second edition of Biodiesel: Growing a New Energy Economy is an invaluable aid. The breathtaking speed with which biodiesel has gained acceptance in the marketplace in the past few years has been exceeded only by the proliferation of biodiesel production facilities around the United States--and the world--only to confront new social and environmental challenges and criticisms. The international survey of the biodiesel industry has been expanded from 40 to more than 80 countries, reflecting the spectacular growth of the industry around the world. This section also tracks the dramatic shifts in the fortunes of the industry that have taken place in some of these nations. The detailed chapters that cover the industry in the United States have also been substantially rewritten to keep abreast of its many new developments and explosive domestic growth. An expanded section on small-scale, local biodiesel production has been added to better represent this small but growing part of the industry. Another new section has been added to more fully explore the increasingly controversial issues of deforestation and food versus fuel, as well as GMO crops. The second edition concludes with updated views on where the industry is headed in the years to come from some of its key players.

Biodiesel: Assessment of Environmental Impact in Producing and Using Chains

by Bhaskar Singh Armen B. Avagyan

Air pollution policy is closely connected with climate change, public health, energy, transport, trade, and agriculture, and generally speaking, the Earth has been pushed to the brink and the damage is becoming increasingly obvious. The transport sector remains a foremost source of air pollutants – a fact that has stimulated the production of biofuels. This book focuses on the biodiesel industry, and proposes a modification of the entire manufacturing chain that would pave the way for further improvements. Oil derived from oilseed plantations/crops is the most commonly used feedstock for the production of biodiesel. At the same time, the UK’s Royal Academy of Engineering and 178 scientists in the Netherlands have determined that some biofuels, such as diesel produced from food crops, have led to more emissions than those produced by fossil fuels. Accordingly, this book re-evaluates the full cycle of biodiesel production in order to help find optimal solutions. It confirms that the production and use of fertilizers for the cultivation of crop feedstocks generate considerably more GHG emissions compared to the mitigation achieved by using biodiesel. To address this fertilization challenge, projecting future biofuel development requires a scenario in which producers shift to an organic agriculture approach that includes the use of microalgae. Among advanced biofuels, algae’s advantages as a feedstock include the highest conversion of solar energy, and the ability to absorb CO2 and pollutants; as such, it is the better choice for future fuels. With regard to the question of why algae’s benefits have not been capitalized on for biofuel production, our analyses indicate that the sole main barrier to realizing algae’s biofuel potential is ineffective international and governmental policies, which create difficulties in reconciling the goals of economic development and environmental protection.

Biodiesel, Combustion, Performance and Emissions Characteristics (Green Energy and Technology)

by Semakula Maroa Freddie Inambao

This book focuses on biodiesel combustion, including biodiesel performance, emissions and control. It brings together a range of international research in combustion studies in order to offer a comprehensive resource for researchers, students and academics alike. The book begins with an introduction to biodiesel combustion, followed by a discussion of NOx formation routes. It then addresses biodiesel production processes and oil feedstocks in detail, discusses the physiochemical properties of biodiesel, and explores the benefits and drawbacks of these properties. Factors influencing the formation of emissions, including NOx emissions, are also dealt with thoroughly. Lastly, the book discusses the mechanisms of pollution and different approaches used to reduce pollutants in connection with biodiesel. Each approach is considered in detail, and diagrams are provided to illustrate the points in line with industry standard control mechanisms.

Biodiesel Fuels: Science, Technology, Health, and Environment (Handbook of Biodiesel and Petrodiesel Fuels)

by Ozcan Konur

This first volume of the Handbook of Biodiesel and Petrodiesel Fuels presents a representative sample of the population papers in the field of biodiesel fuels in general. Part I provides an overview of the research field on both biodiesel and petrodiesel fuels highlighting primary and secondary research fronts in these fields. Part II presents a representative sample of the population papers in the field of biooils covering major research fronts. The research on the biooils is a fundamental part of the research on the biodiesel fuels. The research in this field has intensified in recent years with the application of advanced catalytic technologies and nanotechnologies in both production and upgrading of biooils. It covers pyrolysis, hydrothermal liquefaction, and upgrading, and characterization and properties of biooils besides an overview of the research field. Part III presents a representative sample of the population papers in the field of biodiesel fuels in general covering major research fronts. The research in this field has progressed in the lines of production, properties, and emissions of biodiesel fuels. As in the case of biooils, catalysts and additives play a crucial role for the biodiesel fuels. It covers biomass-based catalyst-assisted biodiesel production, enzymatic biodiesel production, additives in biodiesel production, properties, characterization, performance, and policies of biodiesel fuels besides an overview of the research field. Part IV presents a representative sample of the population papers in the field of glycerol, biodiesel waste, covering major research fronts. The research in this field has intensified in recent years with the increasing volume of biodiesel fuels, creating eco-friendly solutions for these wastes of biodiesel fuels for producing valuable biofuels and biochemicals from glycerol. It covers biohydrogen and propanediol production from glycerol as a case study for bioenergy and biochemicals, respectively. This book will be useful to academics and professionals in the fields of Energy Fuels, Chemical Engineering, Physical Chemistry, Biotechnology and Applied Microbiology, Environmental Sciences, and Thermodynamics. Ozcan Konur is both a materials scientist and social scientist by training. He has published around 200 journal papers, book chapters, and conference papers. He has focused on the bioenergy and biofuels in recent years. In 2018, he edited Bioenergy and Biofuels, which brought together the work of over 30 experts in their respective field. He also edited the Handbook of Algal Science, Technology, and Medicine with a strong section on the algal biofuels in 2020.

Biodiesel Fuels: Science, Technology, Health, and Environment (Handbook of Biodiesel and Petrodiesel Fuels)

by Ozcan Konur

This first volume of the Handbook of Biodiesel and Petrodiesel Fuels presents a representative sample of the population papers in the field of biodiesel fuels in general. Part I provides an overview of the research field on both biodiesel and petrodiesel fuels highlighting primary and secondary research fronts in these fields. Part II presents a representative sample of the population papers in the field of biooils covering major research fronts. The research on the biooils is a fundamental part of the research on the biodiesel fuels. The research in this field has intensified in recent years with the application of advanced catalytic technologies and nanotechnologies in both production and upgrading of biooils. It covers pyrolysis, hydrothermal liquefaction, and upgrading, and characterization and properties of biooils besides an overview of the research field. Part III presents a representative sample of the population papers in the field of biodiesel fuels in general covering major research fronts. The research in this field has progressed in the lines of production, properties, and emissions of biodiesel fuels. As in the case of biooils, catalysts and additives play a crucial role for the biodiesel fuels. It covers biomass-based catalyst-assisted biodiesel production, enzymatic biodiesel production, additives in biodiesel production, properties, characterization, performance, and policies of biodiesel fuels besides an overview of the research field. Part IV presents a representative sample of the population papers in the field of glycerol, biodiesel waste, covering major research fronts. The research in this field has intensified in recent years with the increasing volume of biodiesel fuels, creating eco-friendly solutions for these wastes of biodiesel fuels for producing valuable biofuels and biochemicals from glycerol. It covers biohydrogen and propanediol production from glycerol as a case study for bioenergy and biochemicals, respectively. This book will be useful to academics and professionals in the fields of Energy Fuels, Chemical Engineering, Physical Chemistry, Biotechnology and Applied Microbiology, Environmental Sciences, and Thermodynamics. Ozcan Konur is both a materials scientist and social scientist by training. He has published around 200 journal papers, book chapters, and conference papers. He has focused on the bioenergy and biofuels in recent years. In 2018, he edited Bioenergy and Biofuels, which brought together the work of over 30 experts in their respective field. He also edited the Handbook of Algal Science, Technology, and Medicine with a strong section on the algal biofuels in 2020.

Refine Search

Showing 13,576 through 13,600 of 100,000 results