Browse Results

Showing 14,526 through 14,550 of 100,000 results

Biophysics: A Student’s Guide to the Physics of the Life Sciences and Medicine

by William C. Parke

This comprehensive and extensively classroom-tested biophysics textbook is a complete introduction to the physical principles underlying biological processes and their applications to the life sciences and medicine. The foundations of natural processes are placed on a firm footing before showing how their consequences can be explored in a wide range of biosystems. The goal is to develop the readers’ intuition, understanding, and facility for creative analysis that are frequently required to grapple with problems involving complex living organisms. Topics cover all scales, encompassing the application of statics, fluid dynamics, acoustics, electromagnetism, light, radiation physics, thermodynamics, statistical physics, quantum biophysics, and theories of information, ordering, and evolutionary optimization to biological processes and bio-relevant technological implementations. Sound modeling principles are emphasized throughout, placing all the concepts within a rigorous framework. With numerous worked examples and exercises to test and enhance the reader’s understanding, this book can be used as a textbook for physics graduate students and as a supplementary text for a range of premedical, biomedical, and biophysics courses at the undergraduate and graduate levels. It will also be a useful reference for biologists, physicists, medical researchers, and medical device engineers who want to work from first principles.

Biophysics

by V. Pattabhi N. Gautham

Biophysics, being an interdisciplinary topic, is of great importance in modern biology. This book addresses the needs of biologists, biochemists, and medical biophysicists for an introduction to the subject. The text is based on a one-semester course offered to graduate students of life sciences, and covers a wide range of topics from quantum mechanics to pre-biotic evolution. To understand the topics, only basic school level mathematics is required. The first chapter introduces and refreshes the reader's knowledge of physics and chemistry. The next chapters cover various physico-chemical techniques used to study biomolecular structures, followed by treatments of spectroscopy, microscopy, diffraction, and computational techniques. X-ray crystallography and NMR are dealt with in greater detail. The latter half of the book covers results obtained from applications of the above techniques. Some of the other topics dealt with are energy pathways, biomechanics, and neuro-biophysics.

Biophysics and Nanotechnology of Ion Channels

by Mohammad Ashrafuzzaman

This book provides a comprehensive review of the biophysics and nanotechnology of ion channels. It details the biological and physiological entities of ion channels in cells and addresses various physical perspectives of ion channel structures and functions. Naturally inbuilt and artificial applicable nanotechnologies of ion channels are modelled and explored. It discusses various methods that can be utilized toward understanding ion channel-based cellular diseases. Physical, biochemical, biomedical, and bioinformatics techniques are taken into consideration to enable the development of strategies to address therapeutic drug discovery and delivery. This book will be of interest to advanced undergraduate and graduate students in biophysics and related biomedical sciences in addition to researchers in the field and industry. Features: Provides a stimulating introduction to the structures and functions of ion channels of biological cell membranes and discusses the biophysics of ion channels in condensed matter state and physiological condition Addresses natural processes and nanotechnology opportunities for their purposeful manipulation Lays the groundwork for vitally important medical advances Mohammad Ashrafuzzaman, a biophysicist and condensed matter scientist, is passionate about investigating biological and biochemical processes utilizing the principles and techniques of physics. He is an associate professor at King Saud University’s Biochemistry Department of College of Science, Riyadh, Saudi Arabia, the co-founder of MDT Canada Inc., and the founder of Child Life Development Institute, Edmonton, Canada. He also authored Nanoscale Biophysics of the Cell and Membrane Biophysics.

Biophysics and Nanotechnology of Ion Channels

by Mohammad Ashrafuzzaman

This book provides a comprehensive review of the biophysics and nanotechnology of ion channels. It details the biological and physiological entities of ion channels in cells and addresses various physical perspectives of ion channel structures and functions. Naturally inbuilt and artificial applicable nanotechnologies of ion channels are modelled and explored. It discusses various methods that can be utilized toward understanding ion channel-based cellular diseases. Physical, biochemical, biomedical, and bioinformatics techniques are taken into consideration to enable the development of strategies to address therapeutic drug discovery and delivery. This book will be of interest to advanced undergraduate and graduate students in biophysics and related biomedical sciences in addition to researchers in the field and industry. Features: Provides a stimulating introduction to the structures and functions of ion channels of biological cell membranes and discusses the biophysics of ion channels in condensed matter state and physiological condition Addresses natural processes and nanotechnology opportunities for their purposeful manipulation Lays the groundwork for vitally important medical advances Mohammad Ashrafuzzaman, a biophysicist and condensed matter scientist, is passionate about investigating biological and biochemical processes utilizing the principles and techniques of physics. He is an associate professor at King Saud University’s Biochemistry Department of College of Science, Riyadh, Saudi Arabia, the co-founder of MDT Canada Inc., and the founder of Child Life Development Institute, Edmonton, Canada. He also authored Nanoscale Biophysics of the Cell and Membrane Biophysics.

Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series)

by Christof Koch

Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes. Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation. Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series)

by Christof Koch

Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes. Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation. Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Biophysics of DNA-Protein Interactions: From Single Molecules to Biological Systems (Biological and Medical Physics, Biomedical Engineering)

by Mark C. Williams and L. James Maher

Depite the rapid expansion of the field of biophysics, there are very few books that comprehensively treat specific topics in this area. Recently, the field of single molecule biophysics has developed very quickly, and a few books specifically treating single molecule methods are beginning to appear. However, the promise of single molecule biophysics is to contribute to the understanding of specific fields of biology using new methods. This book would focus on the specific topic of the biophysics of DNA-protein interactions, and would include the use of new approaches, including both bulk methods as well as single molecule methods. This would make the book attractive to anyone working in the general area of DNA-protein interactions, which is of course a much wider market than just single molecule biophysicists or even biophysicists. The subject of the book will be the biophysics of DNA-protein interactions, and will include new methods and results that describe the physical mechanism by which proteins interact with DNA. For example, there has been much recent work on the mechanism by which proteins search for specific binding sites on DNA. A few chapters will be devoted to experiments and theory that shed light on this important problem. We will also cover proteins that alter DNA properties to facilitate interactions important for transcription or replication. Another section of the book will cover the biophysical mechanism by which motor proteins interact with DNA. Finally, we will cover larger protein-DNA complexes, such as replication forks, recombination complexes, DNA repair interactions, and their chromatin context.

Biophysics of Electron Transfer and Molecular Bioelectronics (Electronics and Biotechnology Advanced (Elba) Forum Series #3)

by Claudio Nicolini

Proceedings of the 1997 International Workshop on Biophysics of Electron Transfer: Fundamental Aspects and Applications, held in Bressanone, Italy, October 8-10, 1997

Biophysics of Insect Flight (Springer Series in Biophysics #22)

by N. Chari Prasad Mukkavilli Laxminarayana Parayitam

This book basically involves the study of flight parameters, wing beat frequency, moment of inertia, and wing movements for developing various aerodynamic forces which have been calculated. The book is intended for biologists, physicists, nanotechnologists, and aerospace engineers. Resilin, an elastic polymer (4 λ) which is present at the base of insect, plays a major role in Neurogenic and Myogenic insect flyers and influences the physiology of flight muscles. Leading edge vortex (LEV) is a special feature of insect flight. Insect wings have stalling angle above 60 degrees as compared to a man-made aeroplane stalling angle which is 16 degree. Reynolds number, the knowledge of LEV, and detailed study of moment of inertia help in developing flapping flexible wings for micro-aerial-vehicles. This book serves as an interface between biologists and engineers interested to develop biomimicking micro-aerial-vehicles. The contents of this book is useful to researchers and professionals alike.

Biophysics of RNA-Protein Interactions: A Mechanistic View (Biological and Medical Physics, Biomedical Engineering)

by Chirlmin Joo David Rueda

RNA molecules play key roles in all aspects of cellular life, but to do so efficiently, they must work in synergism with proteins. This book addresses how proteins and RNA interact to carry out biological functions such as protein synthesis, regulation of gene expression, genome defense, liquid phase separation and more.The topics addressed in this volume will appeal to researchers in biophysics, biochemistry and structural biology. The book is a useful resource for anybody interested in elucidating the molecular mechanisms and discrete properties of RNA-protein complexes. Included are reviews of key systems such as microRNA and CRISPR/Cas that exemplify how RNA and proteins work together to perform their biological function. Also covered are techniques ranging from single molecule fluorescence and force spectroscopy to crystallography, cryo-EM microscopy, and kinetic modeling.

Biophysics of Skin and Its Treatments: Structural, Nanotribological, and Nanomechanical Studies (Biological and Medical Physics, Biomedical Engineering)

by Bharat Bhushan

This book provides a comprehensive overview of the structural, nanotribological and nanomechanical properties of skin with and without cream treatment as a function of operating environment. The biophysics of skin as the outer layer covering human or animal body is discussed as a complex biological structure. Skin cream is used to improve skin health and create a smooth, soft, and flexible surface with moist perception by altering the surface roughness, friction, adhesion, elastic modulus, and surface charge of the skin surface.

Biophysics of the Failing Heart: Physics and Biology of Heart Muscle (Biological and Medical Physics, Biomedical Engineering)

by R. John Solaro and Jil C. Tardiff

Subjects in the monograph “Biophysics of the Failing Heart” include state of the art chapters considering major biophysical mechanisms for why hearts responding to acquired or inherited stressors enter into maladaptive processes eventually leading to an inability of the heart to respond efficiently to hemodynamic loads especially during exercise. The chapters describe biophysical techniques that have been applied to determine the triggers for the heart failure process as well as the mechanisms for sustaining the disorders. These techniques include measurements of active and passive mechanical properties and hemodynamics at levels of organization ranging from molecules to hearts beating in situ. Biophysical concepts and approaches are also applied to determination of signaling and signal transduction, energetics, ionic currents, transport processes, electro-chemical and chemo-mechanical coupling. By its emphasis on biophysical aspects of a prevalent clinical condition, the monograph is unique in its perspective and focus. The breadth of information in the chapters all in one place will be of value to clinicians and researchers at all levels. Modern research approaches and clinical understanding of heart failure demands integration of multiple aspects of the disorders. In most cases, combinations of clinician scientists and researchers author the chapters. A main benefit of the book is couched in its didactic approach together with its emphasis on how biophysical concepts and techniques aid in diagnosis and development of new therapies.

Biophysik der Ernährung: Eine Einführung für Studierende, Fachkräfte und Quereinsteiger

by Thomas A. Vilgis

Verstehen Sie die unzähligen, widersprüchlichen Ernährungsempfehlungen nicht mehr? Können Sie beim Cholesterin nur ganz schwer zwischen Gut und Böse unterscheiden? Sind Sie hin- und hergerissen zwischen verschiedenen Ernährungsregeln und Ernährungsformen, die täglich auf Sie hereinprasseln, und verzweifeln am Begriff „gesunde Ernährung“? Oder sind Sie beruflich, z. B. als Berater oder Fitnesscoach, mit Fragen zum Thema Ernährung konfrontiert und möchten sich die naturwissenschaftlichen Grundlagen aneignen? Der Autor Thomas Vilgis rät, dabei erst einmal gelassen zu bleiben und sachlich über alle Mutmaßungen, Vermutungen, Versprechen und Orientierungsvorschläge nachzudenken.Dieses Buch führt Sie abseits ausgetretener Pfade und mit naturwissenschaftlicher, nüchterner Sicht an grundsätzliche Fragen der Ernährung heran. Ausgehend von der Ernährungsgeschichte des Homo sapiens begleitet Sie der Autor in das grundlegende Zusammenspiel zwischen Proteinen, Fetten und Kohlenhydraten, was sie im Körper bewirken, wie sie verdaut werden und welche Rolle sie wirklich spielen. Unterstützend finden Sie in der zweiten Auflage verschiedene abrufbare Videos, in denen komplexe Zusammenhänge anschaulich erklärt werden. So zeigt sich rasch, wie wenig sich hinter manchen zweifelhaften Aussagen verbirgt. Mit dem Anspruch einer naturwissenschaftlichen und molekularen Sicht auf die Ernährung gelingt es, auf verständliche und unterhaltsame Weise so manche fragwürdige Empfehlung zur Ernährung zu relativieren und einzuordnen.

Bioplastics for Sustainable Development

by Mohammed Kuddus Roohi

This book provides the latest information on bioplastics and biodegradable plastics. The initial chapters introduce readers to the various sources and substrates for the synthesis of bioplastics and biodegradable plastics, and explain their general structure, physio-chemical properties and classification.In turn, the book discusses innovative methods for the production of bioplastics at the industrial level and for the microbial production of bioplastics. It highlights the processes that are involved in the conversion of agro-industrial waste into bioplastics, while also summarizing the mechanisms of biodegradation in bioplastics.The book addresses a range of biotechnological applications of bioplastics such as in agriculture, food packaging and pharmaceutical industry, as well as biomedical applications.

Biopolyesters (Advances in Biochemical Engineering/Biotechnology #71)

by Wolfgang Babel Alexander Steinbüchel

Living systems synthesize seven different classes of polymers. They provide structure and form for cells and organisms, function as catalysts and energy storage and carry the genetic information. All these polymers possess technically interesting properties. Some of these biopolymers are already used commercially. This special volume of Advances in Biochemical Engineering/Biotechnology comprises 10 chapters. It gives an overview of the water insoluble biopolyesters, in particular of the microbially synthesized poly-hydroxyalkanoate (PHA) family. It reports the state of the art of metabolism, regulation and genetic background, the latest advances made in genetic optimization of bacteria, "construction" of transgenic plants and in vitro synthesis by means of purified enzymes. Furthermore, it describes relevant technologies and evaluates perspectives concerning increasing the economic viability and competitiveness of PHA and discusses applications in medicine, packaging, food and other fields.

Biopolymer-Based Films and Coatings: Trends and Challenges

by Sneh Punia Bangar Anil Kumar Siroha

With the growing concern for the environment and the rising price of crude oil, there is increasing demand for non-petroleum-based polymers from renewable resources. Biopolymer films have been regarded as potential replacements for synthetic films in food packaging due to a strong marketing trend toward environmentally friendly materials. Biopolymer-based films and coatings display good barrier properties, flexibility, transparency, economic profitability, and environmental compatibility. Therefore, they have successfully been used for packaging various food products. Biopolymer-Based Films and Coatings: Trends and Challenges elaborates on the recent methods and ingredients for making biodegradable films and coatings, as well as the current requirements for food security and environmental issues. This book also explores films and coatings prepared with essential oils, antimicrobial substances, and bioactive components that make up this active packaging. Films and coating chapters are based on biopolymers used to prepare films and coatings, that is, carbohydrates, lipids, proteins, and so on. This book provides a platform for researchers and industrialists on the basic and advanced concepts of films and coatings. Key Features Provides a comprehensive analysis of recent findings on biopolymers (carbohydrate-, protein-, and lipid-) based films and coatings Contains a wealth of new information on the properties, functionality, and applications of films and coatings Presents possible active and functional components and ingredients for developing films and coatings. Guides start-up researchers on where to start the latest research work in packaging It has been estimated that the global production of bioplastics is set to hike from ~2.11 in 2020 to ~2.87 million tonnes in 2025. Further, the demand for fresh, ready-to-eat, or semi-finished foods is increasing, and the need to maintain food safety and quality further exacerbates the challenges in the supply chain, especially with the globalization of food trade and the use of centralized processing facilities for food distribution. It is an urgent requirement to increase shelf life and reduce food product loss. Considering the great market demand for biodegradable material-based packaging systems, this book comes at an opportune time to enable researchers and food scientists to develop suitable solutions considering the sustainability and economic feasibility of the process.

Biopolymer-Based Films and Coatings: Trends and Challenges


With the growing concern for the environment and the rising price of crude oil, there is increasing demand for non-petroleum-based polymers from renewable resources. Biopolymer films have been regarded as potential replacements for synthetic films in food packaging due to a strong marketing trend toward environmentally friendly materials. Biopolymer-based films and coatings display good barrier properties, flexibility, transparency, economic profitability, and environmental compatibility. Therefore, they have successfully been used for packaging various food products. Biopolymer-Based Films and Coatings: Trends and Challenges elaborates on the recent methods and ingredients for making biodegradable films and coatings, as well as the current requirements for food security and environmental issues. This book also explores films and coatings prepared with essential oils, antimicrobial substances, and bioactive components that make up this active packaging. Films and coating chapters are based on biopolymers used to prepare films and coatings, that is, carbohydrates, lipids, proteins, and so on. This book provides a platform for researchers and industrialists on the basic and advanced concepts of films and coatings. Key Features Provides a comprehensive analysis of recent findings on biopolymers (carbohydrate-, protein-, and lipid-) based films and coatings Contains a wealth of new information on the properties, functionality, and applications of films and coatings Presents possible active and functional components and ingredients for developing films and coatings. Guides start-up researchers on where to start the latest research work in packaging It has been estimated that the global production of bioplastics is set to hike from ~2.11 in 2020 to ~2.87 million tonnes in 2025. Further, the demand for fresh, ready-to-eat, or semi-finished foods is increasing, and the need to maintain food safety and quality further exacerbates the challenges in the supply chain, especially with the globalization of food trade and the use of centralized processing facilities for food distribution. It is an urgent requirement to increase shelf life and reduce food product loss. Considering the great market demand for biodegradable material-based packaging systems, this book comes at an opportune time to enable researchers and food scientists to develop suitable solutions considering the sustainability and economic feasibility of the process.

Biopolymer-Based Food Packaging: Innovations and Technology Applications

by Joydeep Dutta Santosh Kumar Avik Mukherjee

Biopolymer-Based Food Packaging Explore the latest developments and advancements in biopolymer-based food packaging In Biopolymer-Based Food Packaging: Innovations and Technology Applications, a team of accomplished researchers delivers a complete, systematic, and sequential account of the contemporary developments in the application of biopolymers for sustainable food packaging. This book introduces the fabrication, characterization as well as benefits arising from the enhanced functionalities of biopolymer-based food packaging materials. The authors introduce various polysaccharide, protein, and microbial polymer-based food packaging films and coatings, as well as biopolymer-based blends and nanocomposites. Importance of these materials as active and intelligent food packaging systems is also introduced. Finally, the book explores biopolymer-based edible food packaging, and its efficacy in extending the shelf-life of perishable food items using sustainable materials and processes suitable for the future of circular economies around the world. Readers will also find: A thorough introduction to the incorporation of nanomaterials as fillers to improve the physico-chemical, mechanical, thermal, barrier, optical, and antimicrobial properties of food packaging nanocomposites Comprehensive discussions of the use of plant-based bioactive compounds, including essential oils, in biopolymer-based food packaging Practical examinations of silver and zinc oxide nanoparticles in food packaging In-depth treatments of polylactic acid-based composites for food packaging applications Biopolymer-Based Food Packaging: Innovations and Technology Applications is an invaluable resource for academic researchers and professionals in food packaging and related industries, as well as research scholars, graduate students, and entrepreneurs working and studying in the field of food preservation, environmental safety, and human health with a focus on the sustainable future.

Biopolymer-Based Food Packaging: Innovations and Technology Applications

by Santosh Kumar Joydeep Dutta Avik Mukherjee

Biopolymer-Based Food Packaging Explore the latest developments and advancements in biopolymer-based food packaging In Biopolymer-Based Food Packaging: Innovations and Technology Applications, a team of accomplished researchers delivers a complete, systematic, and sequential account of the contemporary developments in the application of biopolymers for sustainable food packaging. This book introduces the fabrication, characterization as well as benefits arising from the enhanced functionalities of biopolymer-based food packaging materials. The authors introduce various polysaccharide, protein, and microbial polymer-based food packaging films and coatings, as well as biopolymer-based blends and nanocomposites. Importance of these materials as active and intelligent food packaging systems is also introduced. Finally, the book explores biopolymer-based edible food packaging, and its efficacy in extending the shelf-life of perishable food items using sustainable materials and processes suitable for the future of circular economies around the world. Readers will also find: A thorough introduction to the incorporation of nanomaterials as fillers to improve the physico-chemical, mechanical, thermal, barrier, optical, and antimicrobial properties of food packaging nanocomposites Comprehensive discussions of the use of plant-based bioactive compounds, including essential oils, in biopolymer-based food packaging Practical examinations of silver and zinc oxide nanoparticles in food packaging In-depth treatments of polylactic acid-based composites for food packaging applications Biopolymer-Based Food Packaging: Innovations and Technology Applications is an invaluable resource for academic researchers and professionals in food packaging and related industries, as well as research scholars, graduate students, and entrepreneurs working and studying in the field of food preservation, environmental safety, and human health with a focus on the sustainable future.

Biopolymer Methods in Tissue Engineering (Methods in Molecular Biology #238)

by Anthony P. Hollander and Paul V. Hatton

There is an urgent need to develop new approaches to treat conditions as- ciated with the aging global population. The surgeon’s approach to many of these problems could be described as having evolved through three stages: Removal: Traditionally, diseased or badly damaged tissues and structures might simply be removed. This was appropriate for limbs and non-essential organs, but could not be applied to structures that were critical to sustain life. An additional problem was the creation of disability or physical deformity that in turn could lead to further complications. Replacement: In an effort to treat wider clinical problems, or to overcome the limitations of amputation, surgeons turned to the use of implanted materials and medical devices that could replace the functions of biological structures. This field developed rapidly in the 1960s and 1970s, with heart valve and total joint replacement becoming common. The term “biomaterial” was used increasingly to describe the materials used in these operations, and the study of biomaterials became one of the first truly interdisciplinary research fields. Today, biomaterials are employed in many millions of clinical procedures each year and they have become the mainstay of a very successful industry.

Biopolymer Nanocomposites: Processing, Properties, and Applications (Wiley Series on Polymer Engineering and Technology #8)

by Richard F Grossman Domasius Nwabunma

Sets forth the techniques needed to create a vast array of useful biopolymer nanocomposites Interest in biopolymer nanocomposites is soaring. Not only are they green and sustainable materials, they can also be used to develop a broad range of useful products with special properties, from therapeutics to coatings to packaging materials. With contributions from an international team of leading nanoscientists and materials researchers, this book draws together and reviews the most recent developments and techniques in biopolymer nano-composites. It describes the preparation, processing, properties, and applications of bio- polymer nanocomposites developed from chitin, starch, and cellulose, three renewable resources. Biopolymer Nanocomposites features a logical organization and approach that make it easy for readers to take full advantage of the latest science and technology in designing these materials and developing new products and applications. It begins with a chapter reviewing our current understanding of bionanocomposites. Next, the book covers such topics as: Morphological and thermal investigations of chitin-based nanocomposites Applications of starch nanoparticle and starch-based bionanocomposites Spectroscopic characterization of renewable nanoparticles and their composites Nanocellulosic products and their applications Protein-based nanocomposites for food packaging Throughout the book, detailed case studies of industrial applications underscore the unique challenges and opportunities in developing and working with biopolymer nanocomposites. There are also plenty of figures to help readers fully grasp key concepts and techniques. Exploring the full range of applications, Biopolymer Nanocomposites is recommended for researchers in a broad range of industries and disciplines, including biomedical engineering, materials science, physical chemistry, chemical engineering, and polymer science. All readers will learn how to create green, sustainable products and applications using these tremendously versatile materials.

Biopolymer Nanocomposites: Processing, Properties, and Applications (Wiley Series on Polymer Engineering and Technology #8)

by Richard F Grossman Domasius Nwabunma

Sets forth the techniques needed to create a vast array of useful biopolymer nanocomposites Interest in biopolymer nanocomposites is soaring. Not only are they green and sustainable materials, they can also be used to develop a broad range of useful products with special properties, from therapeutics to coatings to packaging materials. With contributions from an international team of leading nanoscientists and materials researchers, this book draws together and reviews the most recent developments and techniques in biopolymer nano-composites. It describes the preparation, processing, properties, and applications of bio- polymer nanocomposites developed from chitin, starch, and cellulose, three renewable resources. Biopolymer Nanocomposites features a logical organization and approach that make it easy for readers to take full advantage of the latest science and technology in designing these materials and developing new products and applications. It begins with a chapter reviewing our current understanding of bionanocomposites. Next, the book covers such topics as: Morphological and thermal investigations of chitin-based nanocomposites Applications of starch nanoparticle and starch-based bionanocomposites Spectroscopic characterization of renewable nanoparticles and their composites Nanocellulosic products and their applications Protein-based nanocomposites for food packaging Throughout the book, detailed case studies of industrial applications underscore the unique challenges and opportunities in developing and working with biopolymer nanocomposites. There are also plenty of figures to help readers fully grasp key concepts and techniques. Exploring the full range of applications, Biopolymer Nanocomposites is recommended for researchers in a broad range of industries and disciplines, including biomedical engineering, materials science, physical chemistry, chemical engineering, and polymer science. All readers will learn how to create green, sustainable products and applications using these tremendously versatile materials.

Biopolymere (Universitätstaschenbücher #673)

by G. Ebert

Refine Search

Showing 14,526 through 14,550 of 100,000 results