- Table View
- List View
Fundamentals of Satellite Remote Sensing: An Environmental Approach, Third Edition
by Emilio ChuviecoFundamentals of Satellite Remote Sensing: An Environmental Approach, Third Edition, is a definitive guide to remote sensing systems that focuses on satellite-based remote sensing tools and methods for space-based Earth observation (EO). It presents the advantages of using remote sensing data for studying and monitoring the planet, and emphasizes concepts that make the best use of satellite data. The book begins with an introduction to the basic processes that ensure the acquisition of space-borne imagery, and provides an overview of the main satellite observation systems. It then describes visual and digital image analysis, highlights various interpretation techniques, and outlines their applications to science and management. The latter part of the book covers the integration of remote sensing with Geographic Information System (GIS) for environmental analysis. This latest edition has been written to reflect a global audience and covers the most recent advances incorporated since the publication of the previous book, relating to the acquisition and interpretation of remotely sensed data. New in the Third Edition: Includes additional illustrations in full color. Uses sample images acquired from different ecosystems at different spatial resolutions to illustrate different interpretation techniques. Includes updated EO missions, such as the third generations of geostationary meteorological satellites, the new polar orbiting platforms (Suomi), the ESA Sentinels program, and high-resolution commercial systems. Includes extended coverage of radar and LIDAR processing methods. Includes all new information on near-ground missions, including unmanned aerial vehicles (UAVs). Covers new ground sensors, as well as machine-learning approaches to classification. Adds more focus on land surface characterization, time series, change detection, and ecosystem processes. Extends the interactions of EO data and GIS that cover different environmental problems, with particular relevance to global observation. Fundamentals of Satellite Remote Sensing: An Environmental Approach, Third Edition, details the tools that provide global, recurrent, and comprehensive views of the processes affecting the Earth. As one of CRC’s Essential titles, this book and stands out as one of the best in its field and is a must-have for researchers, academics, students, and professionals involved in the field of environmental science, as well as for libraries developing collections on the forefront of this industry.
Fundamentals of Satellite Remote Sensing
by Emilio Chuvieco Alfredo HueteAn extensive review of remote sensing principles with an emphasis on environmental applications, Fundamentals of Satellite Remote Sensing discusses a wide range of topics, from physical principles to data acquisition systems and on to visual and digital interpretation techniques. The text focuses on the interpretation and analysis of remo
Fundamentals of Scientific Computing (Texts in Computational Science and Engineering #8)
by Bertil GustafssonThe book of nature is written in the language of mathematics -- Galileo Galilei How is it possible to predict weather patterns for tomorrow, with access solely to today’s weather data? And how is it possible to predict the aerodynamic behavior of an aircraft that has yet to be built? The answer is computer simulations based on mathematical models – sets of equations – that describe the underlying physical properties. However, these equations are usually much too complicated to solve, either by the smartest mathematician or the largest supercomputer. This problem is overcome by constructing an approximation: a numerical model with a simpler structure can be translated into a program that tells the computer how to carry out the simulation.This book conveys the fundamentals of mathematical models, numerical methods and algorithms. Opening with a tutorial on mathematical models and analysis, it proceeds to introduce the most important classes of numerical methods, with finite element, finite difference and spectral methods as central tools. The concluding section describes applications in physics and engineering, including wave propagation, heat conduction and fluid dynamics. Also covered are the principles of computers and programming, including MATLAB®.
Fundamentals of Semiconductor: Physics and Materials Properties
by Peter YU Manuel CardonaBridging the gap between a general solid-state physics textbook and research articles, the renowned authors provide detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. Their approach is a physical and intuitive one, rather than formal and pedantic. This textbook has been written with both students and researchers in mind, and the authors therefore present theories to explain experimental results. Throughout, the emphasis is on understanding the physical properties of Si, and similar tetrahedrally coordinated semiconductors, with explanations based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures and problems -- many of the latter 'lead students by the hand' to arrive at the results.
Fundamentals of Semiconductor Lasers (Springer Series in Optical Sciences #93)
by Takahiro NumaiThis book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.
Fundamentals of Semiconductor Lasers (Springer Series in Optical Sciences #93)
by Takahiro NumaiThe detailed and comprehensive presentation is unique in that it encourages the reader to consider different semiconductor lasers from different angles. Emphasis is placed on recognizing common concepts such operating principles and structure, and solving problems based on individual situations. The treatment is enhanced by an historical account of advances in semiconductor lasers over the years, discussing both those ideas that have persisted over the years and those that have faded out.
Fundamentals of Semiconductor Manufacturing and Process Control (Wiley - IEEE)
by Gary S. May Costas J. SpanosA practical guide to semiconductor manufacturing from process control to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Control covers all issues involved in manufacturing microelectronic devices and circuits, including fabrication sequences, process control, experimental design, process modeling, yield modeling, and CIM/CAM systems. Readers are introduced to both the theory and practice of all basic manufacturing concepts. Following an overview of manufacturing and technology, the text explores process monitoring methods, including those that focus on product wafers and those that focus on the equipment used to produce wafers. Next, the text sets forth some fundamentals of statistics and yield modeling, which set the foundation for a detailed discussion of how statistical process control is used to analyze quality and improve yields. The discussion of statistical experimental design offers readers a powerful approach for systematically varying controllable process conditions and determining their impact on output parameters that measure quality. The authors introduce process modeling concepts, including several advanced process control topics such as run-by-run, supervisory control, and process and equipment diagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and management of overall manufacturing systems * Chapters include case studies, sample problems, and suggested exercises * Instructor support includes electronic copies of the figures and an instructor's manual Graduate-level students and industrial practitioners will benefit from the detailed exami?nation of how electronic materials and supplies are converted into finished integrated circuits and electronic products in a high-volume manufacturing environment. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department. An Instructor Support FTP site is also available.
Fundamentals of Semiconductor Materials and Devices
by Adrian KitaiGain an introduction to the concepts behind semiconductor materials and devices in this advanced textbook Semiconductors are the foundation of the electronics industry, and are therefore embedded in virtually all modern technology. No engineer or materials scientist can be without an understanding of this essential field. Since semiconductors are also the foundation of solar cells, they play an increasingly critical role in the transition to sustainable technology and promise, as a result, to become even more central in global technological progress. Fundamentals of Semiconductor Materials and Devices is a textbook that presents the advanced principles underlying semiconductors in an accessible and comprehensive way. Combining material from both engineering and physics, it remains grounded throughout in practical applications of semiconductors. Its approach makes it ideal for readers looking to gain a thorough understanding of this ubiquitous technology. Fundamentals of Semiconductor Materials and Devices readers will also find: Questions and exercises to stimulate learning and increase comprehension Introductory chapters detailing the fundamentals of quantum and solid state physics, as well as the foundational principles of semiconductor tech Detailed analysis of topics including flash memory, the quantum dot, two-dimensional semiconductor materials, and more Fundamentals of Semiconductor Materials and Devices is a valuable guide for students and researchers in any area of engineering, physics, or materials science.
Fundamentals of Semiconductor Materials and Devices
by Adrian KitaiGain an introduction to the concepts behind semiconductor materials and devices in this advanced textbook Semiconductors are the foundation of the electronics industry, and are therefore embedded in virtually all modern technology. No engineer or materials scientist can be without an understanding of this essential field. Since semiconductors are also the foundation of solar cells, they play an increasingly critical role in the transition to sustainable technology and promise, as a result, to become even more central in global technological progress. Fundamentals of Semiconductor Materials and Devices is a textbook that presents the advanced principles underlying semiconductors in an accessible and comprehensive way. Combining material from both engineering and physics, it remains grounded throughout in practical applications of semiconductors. Its approach makes it ideal for readers looking to gain a thorough understanding of this ubiquitous technology. Fundamentals of Semiconductor Materials and Devices readers will also find: Questions and exercises to stimulate learning and increase comprehension Introductory chapters detailing the fundamentals of quantum and solid state physics, as well as the foundational principles of semiconductor tech Detailed analysis of topics including flash memory, the quantum dot, two-dimensional semiconductor materials, and more Fundamentals of Semiconductor Materials and Devices is a valuable guide for students and researchers in any area of engineering, physics, or materials science.
Fundamentals of Semiconductor Processing Technology
by Badih El-Kareh Lou N. HutterThe drive toward new semiconductor technologies is intricately related to market demands for cheaper, smaller, faster, and more reliable circuits with lower power consumption. The development of new processing tools and technologies is aimed at optimizing one or more of these requirements. This goal can, however, only be achieved by a concerted effort between scientists, engineers, technicians, and operators in research, development, and manufac turing. It is therefore important that experts in specific disciplines, such as device and circuit design, understand the principle, capabil ities, and limitations of tools and processing technologies. It is also important that those working on specific unit processes, such as lithography or hot processes, be familiar with other unit processes used to manufacture the product. Several excellent books have been published on the subject of process technologies. These texts, however, cover subjects in too much detail, or do not cover topics important to modem tech nologies. This book is written with the need for a "bridge" between different disciplines in mind. It is intended to present to engineers and scientists those parts of modem processing technologies that are of greatest importance to the design and manufacture of semi conductor circuits. The material is presented with sufficient detail to understand and analyze interactions between processing and other semiconductor disciplines, such as design of devices and cir cuits, their electrical parameters, reliability, and yield.
Fundamentals of Semiconductors: Physics and Materials Properties (Graduate Texts in Physics)
by Peter YU Manuel CardonaExcellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors … I know of no better text … I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.
Fundamentals of Semiconductors: Physics and Materials Properties
by Peter YU Manuel Cardona"The most striking feature of the book is its modern outlookprovides a wonderful foundation. The most wonderful feature is its efficient style of expositionan excellent book." PHYSICS TODAY "There is nothing quite like itThose embarking on research into the optical properties of semiconductors will benefit from working through these chaptersa solid introduction to the optical properties of semiconductors" CONTEMPORARY PHYSICS
Fundamentals of Semiconductors: Physics and Materials Properties (Graduate Texts in Physics)
by Peter YU Manuel CardonaExcellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors … I know of no better text … I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.
Fundamentals of Sensor Network Programming: Applications and Technology (Wiley - IEEE)
by S. Sitharama Iyengar Nandan Parameshwaran Vir V. Phoha N. Balakrishnan Chuka D. OkoyeThis book provides the basics needed to develop sensor network software and supplements it with many case studies covering network applications. It also examines how to develop onboard applications on individual sensors, how to interconnect these sensors, and how to form networks of sensors, although the major aim of this book is to provide foundational principles of developing sensor networking software and critically examine sensor network applications.
Fundamentals of Sensor Network Programming: Applications and Technology (Wiley - IEEE)
by S. Sitharama Iyengar Nandan Parameshwaran Vir V. Phoha N. Balakrishnan Chuka D. OkoyeThis book provides the basics needed to develop sensor network software and supplements it with many case studies covering network applications. It also examines how to develop onboard applications on individual sensors, how to interconnect these sensors, and how to form networks of sensors, although the major aim of this book is to provide foundational principles of developing sensor networking software and critically examine sensor network applications.
Fundamentals of Sensors for Engineering and Science
by Patrick F. DunnFundamentals of Sensors for Engineering and Science is a practical analysis of sensors and measurement, designed to help readers make informed decisions when selecting an appropriate sensor for a given application. Spurred by a growing demand for information on the evolution of modern sensors, this book evaluates current applications to illustrate
Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion
by Lothar BirkFundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion Lothar Birk, University of New Orleans, USA Bridging the information gap between fluid mechanics and ship hydrodynamics Fundamentals of Ship Hydrodynamics is designed as a textbook for undergraduate education in ship resistance and propulsion. The book provides connections between basic training in calculus and fluid mechanics and the application of hydrodynamics in daily ship design practice. Based on a foundation in fluid mechanics, the origin, use, and limitations of experimental and computational procedures for resistance and propulsion estimates are explained. The book is subdivided into sixty chapters, providing background material for individual lectures. The unabridged treatment of equations and the extensive use of figures and examples enable students to study details at their own pace. Key features: • Covers the range from basic fluid mechanics to applied ship hydrodynamics. • Subdivided into 60 succinct chapters. • In-depth coverage of material enables self-study. • Around 250 figures and tables. Fundamentals of Ship Hydrodynamics is essential reading for students and staff of naval architecture, ocean engineering, and applied physics. The book is also useful for practicing naval architects and engineers who wish to brush up on the basics, prepare for a licensing exam, or expand their knowledge.
Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion
by Lothar BirkFundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion Lothar Birk, University of New Orleans, USA Bridging the information gap between fluid mechanics and ship hydrodynamics Fundamentals of Ship Hydrodynamics is designed as a textbook for undergraduate education in ship resistance and propulsion. The book provides connections between basic training in calculus and fluid mechanics and the application of hydrodynamics in daily ship design practice. Based on a foundation in fluid mechanics, the origin, use, and limitations of experimental and computational procedures for resistance and propulsion estimates are explained. The book is subdivided into sixty chapters, providing background material for individual lectures. The unabridged treatment of equations and the extensive use of figures and examples enable students to study details at their own pace. Key features: • Covers the range from basic fluid mechanics to applied ship hydrodynamics. • Subdivided into 60 succinct chapters. • In-depth coverage of material enables self-study. • Around 250 figures and tables. Fundamentals of Ship Hydrodynamics is essential reading for students and staff of naval architecture, ocean engineering, and applied physics. The book is also useful for practicing naval architects and engineers who wish to brush up on the basics, prepare for a licensing exam, or expand their knowledge.
Fundamentals of Signal Enhancement and Array Signal Processing (Wiley - IEEE)
by Jacob Benesty Israel Cohen Jingdong ChenA comprehensive guide to the theory and practice of signal enhancement and array signal processing, including matlab codes, exercises and instructor and solution manuals Systematically introduces the fundamental principles, theory and applications of signal enhancement and array signal processing in an accessible manner Offers an updated and relevant treatment of array signal processing with rigor and concision Features a companion website that includes presentation files with lecture notes, homework exercises, course projects, solution manuals, instructor manuals, and Matlab codes for the examples in the book
Fundamentals of Signal Enhancement and Array Signal Processing (Wiley - IEEE)
by Jacob Benesty Israel Cohen Jingdong ChenA comprehensive guide to the theory and practice of signal enhancement and array signal processing, including matlab codes, exercises and instructor and solution manuals Systematically introduces the fundamental principles, theory and applications of signal enhancement and array signal processing in an accessible manner Offers an updated and relevant treatment of array signal processing with rigor and concision Features a companion website that includes presentation files with lecture notes, homework exercises, course projects, solution manuals, instructor manuals, and Matlab codes for the examples in the book
Fundamentals of Signal Processing in Generalized Metric Spaces: Algorithms and Applications
by Andrey PopoffExploring the interrelations between generalized metric spaces, lattice-ordered groups, and order statistics, the book contains a new algebraic approach to Signal Processing Theory. It describes mathematical concepts and results important in the development, analysis, and optimization of signal processing algorithms intended for various applications. The book offers a solution of large-scale Signal Processing Theory problems of increasing both signal processing efficiency under prior uncertainty conditions and signal processing rate that is provided by multiplication-free signal processing algorithms based on lattice-ordered group operations. From simple basic relationships to computer simulation, the text covers a wide range of new mathematical techniques essential for understanding the proposed signal processing algorithms developed for solving the following problems: signal parameter and spectral estimation, signal filtering, detection, classification, and resolution; array signal processing; demultiplexing and demodulation in multi-channel communication systems and multi-station networks; wavelet analysis of 1D/ 2D signals. Along with discussing mathematical aspects, each chapter presents examples illustrating operation of signal processing algorithms developed for various applications. The book helps readers understand relations between known classic and obtained results as well as recent research trends in Signal Processing Theory and its applications, providing all necessary mathematical background concerning lattice-ordered groups to prepare readers for independent work in the marked directions including more advanced research and development.
Fundamentals of Signal Processing in Generalized Metric Spaces: Algorithms and Applications
by Andrey PopoffExploring the interrelations between generalized metric spaces, lattice-ordered groups, and order statistics, the book contains a new algebraic approach to Signal Processing Theory. It describes mathematical concepts and results important in the development, analysis, and optimization of signal processing algorithms intended for various applications. The book offers a solution of large-scale Signal Processing Theory problems of increasing both signal processing efficiency under prior uncertainty conditions and signal processing rate that is provided by multiplication-free signal processing algorithms based on lattice-ordered group operations. From simple basic relationships to computer simulation, the text covers a wide range of new mathematical techniques essential for understanding the proposed signal processing algorithms developed for solving the following problems: signal parameter and spectral estimation, signal filtering, detection, classification, and resolution; array signal processing; demultiplexing and demodulation in multi-channel communication systems and multi-station networks; wavelet analysis of 1D/ 2D signals. Along with discussing mathematical aspects, each chapter presents examples illustrating operation of signal processing algorithms developed for various applications. The book helps readers understand relations between known classic and obtained results as well as recent research trends in Signal Processing Theory and its applications, providing all necessary mathematical background concerning lattice-ordered groups to prepare readers for independent work in the marked directions including more advanced research and development.
Fundamentals of Signal Processing in Metric Spaces with Lattice Properties: Algebraic Approach
by Andrey PopoffExploring the interrelation between information theory and signal processing theory, the book contains a new algebraic approach to signal processing theory. Readers will learn this new approach to constructing the unified mathematical fundamentals of both information theory and signal processing theory in addition to new methods of evaluating quality indices of signal processing. The book discusses the methodology of synthesis and analysis of signal processing algorithms providing qualitative increase of signal processing efficiency under parametric and nonparametric prior uncertainty conditions. Examples are included throughout the book to further emphasize new material.
Fundamentals of Signal Processing in Metric Spaces with Lattice Properties: Algebraic Approach
by Andrey PopoffExploring the interrelation between information theory and signal processing theory, the book contains a new algebraic approach to signal processing theory. Readers will learn this new approach to constructing the unified mathematical fundamentals of both information theory and signal processing theory in addition to new methods of evaluating quality indices of signal processing. The book discusses the methodology of synthesis and analysis of signal processing algorithms providing qualitative increase of signal processing efficiency under parametric and nonparametric prior uncertainty conditions. Examples are included throughout the book to further emphasize new material.
Fundamentals of Signals and Control Systems
by Smain FemmamThe aim of this book is the study of signals and deterministic systems, linear, time-invariant, finite dimensions and causal. A set of useful tools is selected for the automatic and signal processing and methods of representation of dynamic linear systems are exposed, and analysis of their behavior. Finally we discuss the estimation, identification and synthesis of control laws for the purpose of stabilization and regulation. The study of signal characteristics and properties systems and knowledge of mathematical tools and treatment methods and analysis, are lately more and more importance and continue to evolve. The reason is that the current state of technology, particularly electronics and computing, enables the production of very advanced processing systems, effective and less expensive despite the complexity.