Browse Results

Showing 1,151 through 1,175 of 1,360 results

Seminaire de Probabilites XXIII (Lecture Notes in Mathematics #1372)

by Jacques Azema Paul A. Meyer Marc Yor

Besides a number of papers on classical areas of research in probability such as martingale theory, Malliavin calculus and 2-parameter processes, this new volume of the Séminaire de Probabilités develops the following themes: - chaos representation for some new kinds of martingales, - quantum probability, - branching aspects on Brownian excursions, - Brownian motion on a set of rays.

Seminaire de Probabilites XXIV 1988/89 (Lecture Notes in Mathematics #1426)

by Jacques Azema Paul A. Meyer Marc Yor

The different papers contained in this volume are all research papers. The main directions of research which are being developed are: quantum probability, semimartingales and stochastic calculus.

Seminaire de Probabilites XXIX (Lecture Notes in Mathematics #1613)

by Jacques Azema Michel Emery Paul-Andre Meyer Marc Yor

All the papers included in this volume are original research papers. They represent an important part of the work of French probabilists and colleagues with whom they are in close contact throughout the world. The main topics of the papers are martingale and Markov processes studies.

Seminaire de Probabilites XXVII (Lecture Notes in Mathematics #1557)

by Jaques Azema Paul A. Meyer Marc Yor

This volume represents a part of the main result obtained by a group of French probabilists, together with the contributions of a number of colleagues, mainly from the USA and Japan. All the papers present new results obtained during the academic year 1991-1992. The main themes of the papers are: quantum probability (P.A. Meyer and S. Attal), stochastic calculus (M. Nagasawa, J.B. Walsh, F. Knight, to name a few authors), fine properties of Brownian motion (Bertoin, Burdzy, Mountford), stochastic differential geometry (Arnaudon, Elworthy), quasi-sure analysis (Lescot, Song, Hirsch). Taken all together, the papers contained in this volume reflect the main directions of the most up-to-date research in probability theory. FROM THE CONTENTS: J.P. Ansal, C. Stricker: Unicite et existence de la loi minimale.- K. Kawazu, H. Tanaka: On the maximum of a diffusion process in a drifted Brownian environment.- P.A. Meyer: Representation de martingales d'operateurs, d'apres Parthasarathy-Sinha.- K. Burdzy: Excursion laws and exceptional points on Brownian paths.- X. Fernique: Convergence en loi de variables aleatoires et de fonctions aleatoires, proprietes de compacite des lois, II.- M. Nagasawa: Principle ofsuperposition and interference of diffusion processes.- F. Knight: Some remarks on mutual windings.- S. Song: Inegalites relatives aux processus d'Ornstein-Ulhenbeck a n-parametres et capacite gaussienne c (n,2).- S. Attal, P.A. Meyer: Interpretation probabiliste et extension des integrales stochastiques non commutatives.- J. Azema, Th. Jeulin, F. Knight,M. Yor: Le theoreme d'arret en une fin d'ensemble previsible.

Seminaire de Probabilites XXVIII (Lecture Notes in Mathematics #1583)

by Jacques Azema Paul-Andre Meyer Marc Yor

In this volume of original research papers, the main topics discussed relate to the asymptotic windings of planar Brownian motion, structure equations, closure properties of stochastic integrals. The contents of the volume represent an important fraction of research undertaken by French probabilists and their collaborators from abroad during the academic year 1992-1993.

Seminaire de Probabilites XXX (Lecture Notes in Mathematics #1626)

by Jacques Azema Michel Emery Marc Yor

The volume consists entirely of research papers, principally in stochastic calculus, martingales, and Brownian motion, and gathers an important part of the works done in the main probability groups in France (Paris, Strasbourg, Toulouse, Besançon, Grenoble,...) together with closely related works done by some probabilists elsewhere (Switzerland, India, Austria,...).

Seminaire de Probabilites XXXI (Lecture Notes in Mathematics #1655)

by Jacques Azema Michel Emery Marc Yor

The 31 papers collected here present original research results obtained in 1995-96, on Brownian motion and, more generally, diffusion processes, martingales, Wiener spaces, polymer measures.

Séminaire de Probabilités XXXII (Lecture Notes in Mathematics #1686)

by Jacques Azema Michel Emery Michel Ledoux Marc Yor

All the papers in the volume are original research papers, discussing fundamental properties of stochastic processes. The topics under study (martingales, filtrations, path properties, etc.) represent an important part of the current research performed in 1996-97 by various groups of probabilists in France and abroad.

Séminaire de Probabilités XXXVIII (Lecture Notes in Mathematics #1857)

by Michel Émery Michel Ledoux Marc Yor

Besides a series of six articles on Lévy processes, Volume 38 of the Séminaire de Probabilités contains contributions whose topics range from analysis of semi-groups to free probability, via martingale theory, Wiener space and Brownian motion, Gaussian processes and matrices, diffusions and their applications to PDEs. As do all previous volumes of this series, it provides an overview on the current state of the art in the research on stochastic processes.

Séminaire de Théorie des Nombres, Paris 1985–86 (Progress in Mathematics #71)

by C. Goldstein

This is the sixth annual volume of papers based on the outstanding lectures given at the Séminaire de Théorie des Nombres de Paris. The results presented in 1985-86 by an international group of mathematicians reflect the most recent work in many areas of number theory.

Seminaire de Theorie des Nombres, Paris 1989-1990 (Progress in Mathematics #102)

by D. Sinnou

Le travail ci-dessous developpe sur quelques points les tex:tes fondamentaux de C.L. Siegel [13[ et de K. Ramachandra [2). Remerclements C'est au Max Planck Institut de Bonn que la plus grande part des resultats (th. 2 et 3, ex:ception faite du point 3 d et th. 4 et 5) ont ete soit rectiges soit con~s. La rectaction definitive de ce travail a eu lieu ä l'Institut Fourier de Grenoble durant l'hiver 1990. Le th. 1 tel qu'il apparait ici, et le corollaire du th. 6 cf. identite (13), sont nouveaux. On trouvera une rectaction detailleedes th. 2 et 3 dans [51 et, parmi d'autres resultats, des th. 4, 5 et 6 dans [7). Que tous mes collegues et les deux equipes de secretartat recoivent ici mes remerciements les plus chaleureux. 2 1) On pose e( x) = e 1rix, x E C. Pour L un reseau complex:e, on note une base positivement olientee de L = lw + lw c'est-ä-dire teile que 1 2 On definit alors une forme modulaire .,.p> de poids 1 par 1](2)(w) ~fn (21l"i)ql/12 IJ ( - qn)2 1 { w2 n>l 1 12 q = e(W) , q 1 = e(W/12) , W = wt!w2 .

Refine Search

Showing 1,151 through 1,175 of 1,360 results