Machine Learning for Dynamic Software Analysis International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers

You must be logged in to access this title.

Sign up now

Already a member? Log in

Synopsis

Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits” held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches.

Book details

Series:
Lecture Notes in Computer Science (Book 11026)
Author:
Amel Bennaceur, Reiner Hähnle, Karl Meinke
ISBN:
9783319965628
Related ISBNs:
9783319965611
Publisher:
Springer International Publishing
Pages:
N/A
Reading age:
Not specified
Includes images:
Yes
Date of addition:
2018-10-21
Usage restrictions:
Copyright
Copyright date:
2018
Copyright by:
Springer Nature Switzerland AG 
Adult content:
No
Language:
English
Categories:
Computers and Internet, Nonfiction