Computational Tapered and Cylinder Roller Bearings

You must be logged in to access this title.

Sign up now

Already a member? Log in

Synopsis

This monograph presents computational models that describe electro-mechanical characteristics of tapered and cylinder roller bearings in various industrial applications. Applying the Levenberg-Marquardt’s algorithm to solving strongly nonlinear coupled equation systems, the computational models consisting of many circular slices per rolling element enable computations of the local Hertzian pressures at the elastohydrodynamic (EHD) contact area, the relating oil-film thickness in elastohydrodynamic lubrication (EHL), the limiting voltage of electro-pitting, bearing frictions, and fatigue lifetimes of the bearings for various load spectra. Using the best-known machine-learning method for clustering, the load spectrum is clustered in k cluster means based on the invariant damage number to accelerate the load spectrum. Furthermore, the accelerated load spectrum is used for the testing procedure of the bearings to reduce the testing time and costs as well.

The target audience of this book primarily comprises graduate students in mechanical engineering and practicing engineers of electro-machines and transmission systems who want to computationally design tapered and cylinder roller bearings for the automotive industry and other industries, and to deeply dive into these relating working fields.

Book details

Edition:
1st ed. 2019
Author:
Hung Nguyen-Schäfer
ISBN:
9783030054441
Related ISBNs:
9783030054434
Publisher:
Springer International Publishing
Pages:
N/A
Reading age:
Not specified
Includes images:
Yes
Date of addition:
2019-02-02
Usage restrictions:
Copyright
Copyright date:
2019
Copyright by:
Springer Nature Switzerland AG 
Adult content:
No
Language:
English
Categories:
Nonfiction, Technology