Modeling and Stochastic Learning for Forecasting in High Dimensions

You must be logged in to access this title.

Sign up now

Already a member? Log in

Synopsis

The chapters in this volume stress the need for advances in theoretical understanding to go hand-in-hand with the widespread practical application of forecasting in industry. Forecasting and time series prediction have enjoyed considerable attention over the last few decades, fostered by impressive advances in observational capabilities and measurement procedures. On June 5-7, 2013, an international Workshop on Industry Practices for Forecasting was held in Paris, France, organized and supported by the OSIRIS Department of Electricité de France Research and Development Division. In keeping with tradition, both theoretical statistical results and practical contributions on this active field of statistical research and on forecasting issues in a rapidly evolving industrial environment are presented. The volume reflects the broad spectrum of the conference, including 16 articles contributed by specialists in various areas. The material compiled is broad in scope and ranges from new findings on forecasting in industry and in time series, on nonparametric and functional methods and on on-line machine learning for forecasting, to the latest developments in tools for high dimension and complex data analysis.

Book details

Edition:
2015
Series:
Lecture Notes in Statistics (Book 217)
Author:
Anestis Antoniadis, Jean-Michel Poggi, Xavier Brossat
ISBN:
9783319187327
Related ISBNs:
9783319187310
Publisher:
Springer International Publishing
Pages:
N/A
Reading age:
Not specified
Includes images:
Yes
Date of addition:
2019-09-08
Usage restrictions:
Copyright
Copyright date:
2015
Copyright by:
Springer International Publishing, Cham 
Adult content:
No
Language:
English
Categories:
Computers and Internet, Mathematics and Statistics, Nonfiction