Stochastic Models for Spike Trains of Single Neurons
Synopsis
1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic deletion model 45 5. 1. 2 Higher-order properties of the sequence of r-events 55 5. 1. 3 Extended version of Model 5. 1 - Model 60 5. 2 5. 2 Models with dependent interaction of excitatory and inhibitory sequences - MOdels 5. 3 and 5.
Book details
- Edition:
- 1977
- Series:
- Lecture Notes in Biomathematics (Book 16)
- Author:
- S.K. Srinivasan, Gopalan Sampath
- ISBN:
- 9783642483028
- Related ISBNs:
- 9783540082576
- Publisher:
- Springer Berlin Heidelberg
- Pages:
- N/A
- Reading age:
- Not specified
- Includes images:
- No
- Date of addition:
- 2022-08-25
- Usage restrictions:
- Copyright
- Copyright date:
- 1977
- Copyright by:
- N/A
- Adult content:
- No
- Language:
-
English
- Categories:
-
Mathematics and Statistics, Nonfiction